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Abstract— Emerging immersive media applications demand 
tailored performance to accommodate diverse user intents, 
particularly in scenarios with multiple users with different intents 
and requiring frame synchronisation. This paper introduces a 
novel transport-layer intelligence scheme that leverages a user 
intent-aware API. This API enables the application layer to 
communicate specific user intents and requirements to the 
transport layer, optimizing immersive application performance. 
Using deep reinforcement learning, our solution automatically 
selects the optimal transport protocol and configuration for each 
user intent across various immersive scenarios. Our evaluation 
focuses on a live immersive video streaming application, with 
different users transmitting volumetric content under different 
network conditions. Results demonstrate that our scheme 
accurately identifies suitable transport protocols and tailored 
configurations for a wide range of user intents, ensuring multi-
user frame Synchronisation. 

Index Terms— volumetric streaming, Transport-layer 
intelligence, Intent-based networking  

I. INTRODUCTION 

In recent years, with the rise of interactive virtual reality 
devices and the emergence of various multi-party applications, 
how to effectively transmit live volumetric content over 
networks has become a hot topic in both the industry and 
academia [1-3]. However, only minor attention has been paid 
to transport layer protocols, which are responsible for probing 
network conditions and directly determining the transmission 
rate of the volumetric frame. The legacy transport layer 
protocols (e.g., SCTP, TCP, and QUIC [4-5]) and their 
congestion control algorithms (BBR, CUBIC [6-7]) lack the 
flexibility and programmability to meet the diverse needs of 
modern media applications, particularly those with varying user 
intents in live volumetric streaming scenarios. For instance, 
considering an Internet-scale live virtual performance, the 
members of a band can be located in different countries or 
cities, and perform corresponding musical instruments by 
receiving the volumetric images of other members. At the same 
time, after the volumetric content of all band members is 
transmitted to the audience in different regions, the audience 
can also transmit their interactive behaviours to the band in the 
form of volumetric content for real-time interaction. However, 
due to variations in personnel numbers, behavioural patterns, 
and the current stage's focus, the volume of transmitted content 
may significantly differ [1, 8]. In addition, the transmission of 
such multi-party content in different regions needs to undergo 
various network conditions. Therefore, the transport layer 
protocol is required to dynamically perceive the unpredictable 
user intent changes in the application layer and make real-time 

rate adjustments based on the changes in both the application 
layer and the network conditions. In other words, flexibility and 
extensibility are crucial, especially for multi-user 
Synchronisation, precluding a one-size-fits-all approach.  

In this paper, we propose a transport-layer architecture that 
incorporates user intent awareness for immersive volumetric 
environments. This architecture exposes an intent interface at 
the application layer to communicate and indicate the user’s 
specific requirements to the transport layer. User intent input 
can be translated into instant application performance 
requirements, and then the transport layer protocol will 
automatically conduct self-adaptive configuration to guarantee 
such requirements (e.g., multi-party frame Synchronisation).    
By doing so, we aim to enhance the flexibility and 
programmability of the transport layer, with minimal 
modifications to legacy applications while ensuring zero risk to 
the kernel. This architecture also eliminates the need for manual 
tuning of transport-layer parameters or expert knowledge of 
different transport stacks, enabling scalable and adaptive 
Synchronisation tailored to user intents. We employ deep 
neural networks enhanced by reinforcement learning for robust 
function approximation, capturing intricate representations of 
application use case intents and requirements. By leveraging 
and extending the actor-critic reinforcement learning 
framework [9], our approach enables the actor network to 
govern transport-layer configuration decisions, while the critic 
network assesses and provides feedback on the chosen 
configurations, tailored to specific user intents within 
immersive applications.  
The main contribution of our work is listed as follows: 
 We propose a holistic solution for user intent awareness at 

the transport layer in live volumetric immersive 
applications. Our approach includes an application-intent 
expression Application Programming Interface (API) and 
an intent policy manager to translate such user intent into 
detailed performance metrics. This allows the transport 
layer to adaptively support tailored application 
requirements across diverse use cases. 

 We implement a Deep Reinforcement Learning (DRL)--
based transport-layer scheme that identifies the most 
suitable protocols and configurations to meet user intent-
specific performance requirements in live volumetric 
applications. This ensures the transport layer's extensibility 
and flexibility, enabling transparent utilization of existing 
protocols with intent-optimized configurations. 

 In our evaluation, we compare our intent-aware transport-
layer services against traditional approaches in a live 
volumetric streaming application, emphasizing multi-user 
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Synchronisation. Our system significantly improves 
performance in key metrics, predicting appropriate 
protocols and configurations to achieve desired application 
performance while balancing trade-offs. 

The remainder of the paper is organized as follows: Section II 
reviews related literature, Section III details the framework 
architecture and DRL algorithm, Section IV analyses performance, 
and Section V concludes the paper. 

II. LITERATURE REVIEW 

Intent-driven networks (IDN) [10] is a recent approach that 
allows expressing service needs ("intents") through declarative 
or imperative mechanisms, abstracting away the complexity of 
their implementation. These intents, with the right level of 
abstraction, can comprehensively describe services or 
applications and their requirements, which are then 
communicated to lower network layers. IDN starts with a 
semantic language to represent intents, converting them to 
primitives and mapping them to executable policies. These 
policies are verified and deployed to the network to fulfil the 
original service intents. However, a unified and clear definition 
of IDN is still lacking, and its enabling techniques are under 
further exploration. 

In recent years, various intent-aware and protocol-
independent transport layers have been introduced, including 
IETF TAPS [11], NEAT [12], Socket Intents [13], and 
Congestion Control Plane (CCP) [14], aiming to enhance the 
flexibility and extensibility of the transport layer. IETF TAPS 
[11], a recent standard body effort, strives to replace the 
conventional system-level socket API with a new transport-
layer socket API, enabling applications to articulate their needs 
and preferences for optimal transport-layer service selection. 
CCP [14], another recent advancement, modifies parameters 
like congestion window and sending rate in user space to 
customize the congestion control of underlying TCP 
implementations. Hybrid Information-Centric Network (ICN) 
Transport [15] leverages the ICN architecture, using prefixes in 
content naming to communicate application intents, such as 
real-time audio or video streams, and tags like "wireless," 
"cellular," "interactive," or "reliable" to indicate preferences. 
These tags are not static but can be dynamically updated. 
Researchers in [16] explored deep reinforcement learning to 
adjust TCP's congestion window, ensuring applications achieve 
their desired delays in dynamically changing networks. 
Leveraging advancements in network programmability and 
virtualization, numerous other cross-layer application intent 
awareness efforts have been proposed, including DiffServ [17], 
TMForum APIs [18], ETSI NFV Network Service Descriptor 
[19], and ETSI Mobile Edge Application Descriptor [20]. These 
efforts span data paths, user and kernel spaces, stream-byte and 
message-based approaches, demonstrating the ongoing 
innovation in intent-driven networking. 

Although significant progress has been made in the next-
generation intent-aware transport layer, available requests or 
API calls are still constrained by static APIs. CCP [14], AI-
based congestion control [16], and transport layer adaptation 
[27] often rely on a specific transport protocol (e.g., TCP or 
QUIC) or predefined application requirements (e.g., 
throughput, delay), limiting their generality and adaptability. 

Research on IDN [10], emphasizing intent taxonomy and 
lifecycle functions, and Hybrid-ICN Transport [15] are ongoing 
but lack unified standards, implementations, verifications, and 
transport orchestration support. This underscores the need for 
further advancements in transport layer architecture to fulfil the 
demands of future user intent-aware networks.  
 

III. INTENT-AWARE TRANSPORT-LAYER SERVICES 

In this section, we describe the design of our intent-aware 
transport-layer architecture tailored for volumetric applications in 
which end users may express different intents on the applications 
in specific use case scenarios.  

A. System Overview 

We propose intent-aware transport-layer services that allow 
the extensible and flexible use of any transport-layer protocols 
with minimal modification at the application’s source code (see 
Fig. 1). The connection handler is the key component to receive 
the configuration policy translated from user intent.  By 
capturing the packets at the socket layer and redirecting them 
from the traditional data path, this connection handler allows to 
autonomously configure different connection properties (e.g. 
congestion control algorithm, congestion window (cwnd), 
initial window (IW), etc.) in response to different or changing 
of user intents in human-oriented immersive applications. 
Meanwhile, useful information from captured packets will be 
stored as input statistical data for a DRL module to train and 
generate an optimal configuration policy. These real-time 
configuration policies tailored for different user intents will be 
loaded by the transport layer policy manager and then instructed 
to the underlying protocol stack accordingly through the 
connection handler. Since the connection handler manages pre-
activated sockets of different transport layer protocols (e.g.,  
TCP, QUIC, SCTP), it will first select one of the protocols, and 
then configure its parameters. Moreover, the selected transport-
layer configuration towards which the data path redirection is 
executed may either already exist in the Operating System (OS) 
or not, therefore in order to maintain reliability, our intent-
aware transport-layer architecture integrates a systematic 
fallback to the application’s original transport-layer protocol in 
any failure situation (middleboxes interferences, etc.). 
Consequently, this architecture is not limited to any particular  

Figure 1. Intent-aware transport-layer services architecture for volumetric 
streaming environments 



 

 
 

Figure 2. Simplified Workflow of the intent framework 

 
implementation of the main execution loop which could be 
using eBPF [21] (for Linux kernel) or a customized datapath 
library (e.g. libccp [14]).  

Fig. 2 shows an overview of intent-aware transport-layer 
services at the sender and receiver sides. Application 
performance targets or requirements in a specific intent are 
receiver-driven and can be flexibly expressed via our designed 
transport-layer API both at the beginning or in the middle of the 
data transmission session. The sender acquires frame request 
packets from the receiver and updates its intent map to keep 
track of applications with its corresponding user intent.   Also, 
it performs a transport-layer protocol selection, and 
configuration optimization process with an aim to satisfy the 
requests of receivers. Application at the receiver side is allowed 
to express its requirement through our transport-layer API 
which updates the intent map at run time. The intent map allows 
us to map applications with their intent-dependent requirements 
as well as with its most suitable transport-layer protocols to 
satisfy these targets at a low computational cost. Packets 
received from the network card will be redirected to eXpress 
Data Path (XDP) [21] to perform high-speed packet processing 
before mapping back to the corresponding application. These 
packets received are also used for network profiling for future 
analysis. 

In terms of detailed function implementation, at both the 
sender and receiver sides, the system interrupts the data path of 
the application’s original transport-layer protocol (e.g. TCP) 
and takes control of the packets for our intelligent processing 
before the network stacks. The intent-aware transport-layer 
services capture system calls and network events (e.g. 
sendmsg(), recvmsg()) and then run our own safety-verified 
data-path programs at both user and kernel space. Assuming a 
host running the Linux operating system, the implementation 
using eBPF [21] hookers attached to root cgroupv2 [21] will 
enable every incoming and outcoming packet of all processes 
on the host to be captured and processed. With the assistance of 
a locally maintained intent/socket map, the socket and message 
controller are able to identify the specific socket and process to 
which the data packets should be forwarded. This map is 
updated in the socket and message controller every time a 
connection is established or closed. 

 

B. Deep Reinforcement Learning-Based Intent-Aware 
Transport-Layer Protocol Selection & Configuration 

Based on the filtered packet information, we utilize a deep 
reinforcement learning approach [9, 22, 25] in our integrated 
transport policy manager to automatically identify the most 
suitable set of transport-layer protocols and configurations to 
satisfy the user intent. We manage to investigate whether 
reinforcement learning “trial-and-error” approaches could be 
used to enable transport-layer intelligence where our 
considered scenarios have non-guaranteed global knowledge 
and a certain degree of dynamics in application intent-
dependent requirements. 
Input sample: The inputs into the transport policy manager 
comprise network characteristics profiling from the receiving 
packets (e.g., normalized round trip delay, packet loss). Based 
on that, the transport policy manager builds a table of network 
state and state transitions. The observed Quality-of-Service 
(QoS) metrics are utilized to infer the objective application-
specific performance to which we compare the expected 
performance in the reward function. As the intent-aware 
transport policy manager maintains a historical record of state-
action-reward tuples ൏ 𝑠௜ ,𝑎௜ , 𝑟௜ ൐ , we describe our novel 
design of state and action spaces, and the reward function of the 
agent as follows: 
State space: state 𝑠௜

௧ of endpoint 𝑛௜ at time t is 𝑠௜
௧ ൌ ሼ𝑢௜

௧ሽ where 
𝑢௜
௧ ൌ ሼ𝑢௜,଴

௧ ,  𝑢௜,ଶ
௧ ,  … ,  𝑢௜,௞

௧ ሽ  as the QoS and application-specific 
performance utility values observed. These QoS and 
application-specific performance utility values are bounded 
histories of statistics from received packet acknowledgement, 
and also the application layer feedback if it can be retrieved 
from the user intent interface. We propose to avoid metrics that 
are expected to be highly variable across connections just 
because of variations in link properties (e.g. deteriorated 
wireless signals). 
Action space: action 𝑎௜

௧ of endpoint 𝑛௜ at time t is defined as: 
𝑎௜
௧ ൌ ሼ𝑝௜

௧ ,  ∀𝑝 ∈ 𝑃ሽ,  𝑝௜
௧ ൌ ሾ0,1ሿ indicating a list of transport-

layer candidates associated with different configurations (e.g. 
Congestion Control (CC), cwnd, etc.). Our system model 
encourages exploration and avoids repeatedly selecting a 
particular set of transport parameters by assigning equal 
probabilities to actions having relatively the same Q-values. We 
manage to explore the action space where the transport policy 
manager selects the most suitable transport-layer protocols (e.g. 
TCP, UDP, QUIC, SCTP, etc.) and its transport-layer features 
(e.g. congestion control algorithms, cwnd, IW) based on the 
observed states to maximize the reward function. Our intent-
aware transport-layer policy manager treats continuous cwnd 
configuration and discrete CC configuration separately. It is due 
to the huge space of the continuous action (i.e., the value of 
cwnd) that the DRL-agent can do at different times. Thus, in 
order to improve the feasibility and efficiency, we let the DRL 
agent find the best values of the action based on the parameters 
calculated by the underlying transport protocol (e.g. TCP). 
Thus, we propose a function that relates cwndୢ୰୪ value to the 
value of cwnd that the DRL-agent receives periodically from 
the state block: 
 



 

cwndୢ୰୪ ൌ  cఈ ൈ cwnd                                      ሺ1)  
 
where c is a constant factor and −1 ≤ α ≤ 1. Instead of searching 
the entire space, this simplifies the exploration phase and 
improves the learning convergence. 
 
Reward space: 
 𝑟௜
௧ ൌ െሺ𝑟𝑒𝑞_𝑢𝑡𝑖𝑙𝑖𝑡𝑦௜

௧ െ 𝑐𝑢𝑟𝑟_𝑢𝑡𝑖𝑙𝑖𝑡𝑦௜
௧ሻ reflecting the gap 

between the intent-dependent request and the current 
experience. The reward model aims to reflect application-
specific performance, possibly under QoS and other constraints, 
and the policy design that maximizes long-term rewards. As the 
reward may depend on the requirements of different 
applications, we aim to generalize the reward function. We 
prefer objective application-specific performance evaluation 
over subjective application-specific performance evaluation to 
increase the level of automation without manual expression from 
the application layer (e.g. Mean Opinion Score). QoS metrics 
are prominently used in the automated application-specific 
performance evaluation, thus we utilize WFL (Weber-Fechner 
Law) [23] and IQX (Exponential Interdependency of QoE/QoS) 
[23] to calculate reward utility function:  
 
 qoe୧,୮

୲  = γp × log(αp × qos୧
୲ + βp ) + θp                    (2)  

 
for positive QoS metrics and  
 

qoe୧,୬
୲  = γn × eαn × ୯୭ୱ౟

౪ + βn  + θn                               (3) 
  
for negative QoS metrics in which 𝛼, 𝛽, 𝛾 and 𝜃 are constant 
parameters to fine-tune QoS/ application-specific  performance  
relationships. The reward utility function is: 
 
                   𝑟𝑒𝑞_𝑢𝑡𝑖𝑙𝑖𝑡𝑦௜

௧ ൌ 𝛼𝑞𝑜𝑒௜,௣
௧ െ 𝛽𝑞𝑜𝑒௜,௡

௧                        (4)  
 

Note that some application-specific performance 
requirements may conflict with each other (e.g. high Frame-Per-
Second (FPS), low playback latency), thus we utilize 𝛼, 𝛽 as the 
weighting factor controlled by the specified requirement priority 
from the application.  

Moreover, we propose to utilize the soft actor-critic based RL 
[22] approach which optimizes a stochastic policy in an off-
policy manner. The actor-network controls the transport-layer 
configuration decisions/actions, and the critic network 
evaluates and provides feedback on the chosen decisions to 
update the transport-layer policy. Soft actor-critic [22,25] 
allows our intent-aware transport-layer services to explore the 
continuous action space of cwnd while being more sample 
efficient and more robust to brittleness in convergence 
compared to other approaches.  

Regarding other components in the DRL network structure, 
the input is the state of transport properties and current 
QoS/QoE, and with two fully connected layers, we also utilize 
long short-term memory (LSTM) [24] before feed parameters 
to pre-training actor and critic networks. This allows our intent-
aware transport-layer services to make time-series predictions 
in the environment of a large input space [9].  In actor-critic 
based approach, the actor-network controls how the end host 
behaves by learning the optimal policy from a given state as 

input and aims to make the best transport-layer configuration 
decisions.  
   The critic network evaluates the action by computing the 
value function. We utilize soft actor-critic which makes use of 
three functions: a state value function V, a soft Q-function Q, 
and a policy function 𝜋 . We train the three function 
approximators in line with [22, 25] for discrete transport-layer 
protocol and CC selections. For continuous transport-layer 
adaptive configuration, the three function approximators are 
trained as in [22, 25].  

 We provide the pseudo-code for our intent-aware transport-
layer policy manager in Table 1. First, it updates all the network 
functions during each epoch in an experience-replay manner. 
After the actor-critic based training, the actor network can be 
used to make transport-layer configuration decisions. More 
specifically, the process consists of two phases: 1) Offline 
training: the actor and critic networks are built and pre-trained 
with a number of historic transition samples in order to achieve  
relatively good initial parameters for phase 2.  2) Online control: 
start with a set of parameters initialized in phase 1, in each epoch 
t, the agent observes the state 𝑠௜

௧ and obtains the Q-value from 
the actor-critic networks. Then, a list of action 𝑎௜

௧ are selected 
based on 𝜋 -policy, whether to choose a specific transport 
protocol, congestion control or to increase and decrease 
congestion control window to a certain amount. The transport-
layer policy manager is encouraged to explore different possible 
actions that assign equal probabilities to actions that have 
relatively similar Q-values. After the action 𝑎௜

௧ is executed, the 
agent observes the reward 𝑟௜

௧ and next state 𝑠௜
௧ାଵ on which the 

action policy keeps updating for the next epoch time t+1. The 
transition (𝑠௜

௧ , 𝑎௜
௧ , 𝑟௜

௧ , 𝑠௜
௧ାଵ) is stored in the memory at the end 

of each time period. Note that even though the future transport-
layer services should be able to holistically adapt against both 
user-intended requirements and dynamic network conditions 
which will result in rapid exploration of huge action space and 



 

complexities, in this paper, we focus on the flexible intent of 
application where there can be multiple users, especially they 
require for performance Synchronisation, even for the same 
application type. The intelligent transport layer should be able to 
understand the actual requirements of the application and adapt 
its configuration to satisfy them. 

IV. REAL-LIFE PERFORMANCE EVALUATIONS 

This section presents a multi-criteria evaluation of our intent-
aware transport-layer intelligence, focusing on the live 
volumetric streaming application and its performance with 
different sets of application requirements and intents.  
 
A. Volumetric streaming application overview 

   The live volumetric system captures 3D objects from various 
locations using multiple sensor cameras like Azure Kinect. 
Each camera sends colour-depth images converted to 3D point 
clouds to a server. The server receives frames from different 
clients, processes them, and creates a rendered hologram. This 
technology enables viewing 3D objects from different angles, 
making it applicable in various areas such as teleconference, 
telecommunication, tele-training, entertainment, and 
healthcare. The paper evaluates the performance of the intent-
aware transport-layer services in a predefined scenario: 
Immersive bidirectional interactions and live teleporting of 
multiple objects from different network locations prioritize 
minimizing the time gap between frames arriving at the server 
from different sources to ensure Synchronisation. The paper 
mainly focuses on the flexible intent of the application with 
static but different access delays. It briefly mentions evaluating 
the transport-layer services in the presence of more complex 

and dynamic network conditions, leaving the adaptability to 
future work. Throughout the evaluation, the minimum Round-
Trip Time (RTT) of the network is set to 25 ms, and the buffer 
size is 128 KB. 

We design the learning model of the transport-layer policy 
manager using Python and Tensorflow [26], running on a 
machine with an Intel i7 3.2 GHz CPU card, GTX 1060 GPU 
card, and 32GB memory. For parameters of the proposed DRL 
network. we set the discount factor as 0.99 and the learning rate 
for both the actor-critic networks is 1e-4. The hidden layers’ 
size is 128. The number of iterations is 10000. We use 70% data 
for training and 30% of the data for evaluation. 

 

B. Intent-aware congestion window configurations 

Then we evaluate the performance impacts of our intent-
aware transport-layer services on congestion control 
configurations (i.e. cwnd) tailoring for the predefined scenario. 
We evaluate and compare our intent-aware transport-layer 
services’ decision-making against the most popular TCP 
scheme: TCP Cubic [6], with no intent awareness in its 
algorithm. In this scenario of live volumetric streaming (see 
Fig.3), the server receives frames from two different sources: 
source 1 with 25ms RTT and source 2 with 50ms RTT. Due to 
the frame Synchronisation requirements, the target is to 
minimize the time gap between frames coming from different 
sources with the upper threshold for the time gap being 50ms.  
As shown in Fig. 3d-f, our intent-aware transport-layer services 
could handle not only one-to-one sender-receiver 
communication but also many-to-one communication for future 
application usage. In order to reduce the time gap between 

(a)                                                                 (b)                                                            (c) 

(d)                                                                 (e)                                                         (f) 

Figure 3. Live volumetric streaming performance with: TCP without intent awareness (a-c) and intent-aware transport-

layer services (d-f) in bi-directional multisource live streaming use case which prioritise the frame arrival time.  



 

frames sent from different sources where source 1 has a shorter 
path compared to source 2, the proposed transport-layer 
services are able to adaptively and strictly minimize the queuing 
delay in the longer path while being more relaxed in the shorter 
path. At some certain events in source 1, the predicted cwnd is 
adaptively configured higher than the calculated Cubic cwnd 
(Fig. 3f) which results in relatively higher playback latency in 
the shorter path. As a result, this allows the frame time gap 
between the two sources to keep under 40 ms (Fig. 3e) while 
both maintain above 20 average FPS performance (Fig. 3d). 
This comes with the cost of playback latency has been 
compromised in source 1 (Fig. 3e) in order to achieve the fully 
synchronized frames from multiple sources [10, 11]. On the 
other hand, when both sources are running traditional TCP with 
no intent awareness, the frame arrival time gap varies from 20 
ms to 120 ms. The average time gap is 72 ms which exceeds 
significantly the 50 ms target resulting in severe frame 
misalignment [11]. In the worst-case scenario, the frame arrival 
time gap between two clients running traditional TCP Cubic 
with no intent awareness can go up to 100  ms which is two to 
three times higher compared to the time gap between the clients 
running our intent-aware transport services. 

V. CONCLUSION 

In this paper, we introduce a transport-layer intelligence with 
application intent awareness, enabling complex applications to 
express their intent to the transport layer. This innovation 
supports immersive mixed-reality applications with transparent 
deployment and configuration of transport-layer protocols. We 
evaluate our intent-aware services, emphasising frame 
synchronisation in a multi-party scenario, and demonstrate that 
our system can autonomously predict the most suitable 
protocols and configurations to balance complex requirements 
and achieve application performance targets.  
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