

User-Intent Aware Transport-Layer Intelligence for
Frame Synchronisation in Multi-Party XR Application

Abstract— Emerging immersive media applications demand
tailored performance to accommodate diverse user intents,
particularly in scenarios with multiple users with different intents
and requiring frame synchronisation. This paper introduces a
novel transport-layer intelligence scheme that leverages a user
intent-aware API. This API enables the application layer to
communicate specific user intents and requirements to the
transport layer, optimizing immersive application performance.
Using deep reinforcement learning, our solution automatically
selects the optimal transport protocol and configuration for each
user intent across various immersive scenarios. Our evaluation
focuses on a live immersive video streaming application, with
different users transmitting volumetric content under different
network conditions. Results demonstrate that our scheme
accurately identifies suitable transport protocols and tailored
configurations for a wide range of user intents, ensuring multi-
user frame Synchronisation.

Index Terms— volumetric streaming, Transport-layer
intelligence, Intent-based networking

I. INTRODUCTION

In recent years, with the rise of interactive virtual reality
devices and the emergence of various multi-party applications,
how to effectively transmit live volumetric content over
networks has become a hot topic in both the industry and
academia [1-3]. However, only minor attention has been paid
to transport layer protocols, which are responsible for probing
network conditions and directly determining the transmission
rate of the volumetric frame. The legacy transport layer
protocols (e.g., SCTP, TCP, and QUIC [4-5]) and their
congestion control algorithms (BBR, CUBIC [6-7]) lack the
flexibility and programmability to meet the diverse needs of
modern media applications, particularly those with varying user
intents in live volumetric streaming scenarios. For instance,
considering an Internet-scale live virtual performance, the
members of a band can be located in different countries or
cities, and perform corresponding musical instruments by
receiving the volumetric images of other members. At the same
time, after the volumetric content of all band members is
transmitted to the audience in different regions, the audience
can also transmit their interactive behaviours to the band in the
form of volumetric content for real-time interaction. However,
due to variations in personnel numbers, behavioural patterns,
and the current stage's focus, the volume of transmitted content
may significantly differ [1, 8]. In addition, the transmission of
such multi-party content in different regions needs to undergo
various network conditions. Therefore, the transport layer
protocol is required to dynamically perceive the unpredictable
user intent changes in the application layer and make real-time

rate adjustments based on the changes in both the application
layer and the network conditions. In other words, flexibility and
extensibility are crucial, especially for multi-user
Synchronisation, precluding a one-size-fits-all approach.

In this paper, we propose a transport-layer architecture that
incorporates user intent awareness for immersive volumetric
environments. This architecture exposes an intent interface at
the application layer to communicate and indicate the user’s
specific requirements to the transport layer. User intent input
can be translated into instant application performance
requirements, and then the transport layer protocol will
automatically conduct self-adaptive configuration to guarantee
such requirements (e.g., multi-party frame Synchronisation).
By doing so, we aim to enhance the flexibility and
programmability of the transport layer, with minimal
modifications to legacy applications while ensuring zero risk to
the kernel. This architecture also eliminates the need for manual
tuning of transport-layer parameters or expert knowledge of
different transport stacks, enabling scalable and adaptive
Synchronisation tailored to user intents. We employ deep
neural networks enhanced by reinforcement learning for robust
function approximation, capturing intricate representations of
application use case intents and requirements. By leveraging
and extending the actor-critic reinforcement learning
framework [9], our approach enables the actor network to
govern transport-layer configuration decisions, while the critic
network assesses and provides feedback on the chosen
configurations, tailored to specific user intents within
immersive applications.
The main contribution of our work is listed as follows:
 We propose a holistic solution for user intent awareness at

the transport layer in live volumetric immersive
applications. Our approach includes an application-intent
expression Application Programming Interface (API) and
an intent policy manager to translate such user intent into
detailed performance metrics. This allows the transport
layer to adaptively support tailored application
requirements across diverse use cases.

 We implement a Deep Reinforcement Learning (DRL)--
based transport-layer scheme that identifies the most
suitable protocols and configurations to meet user intent-
specific performance requirements in live volumetric
applications. This ensures the transport layer's extensibility
and flexibility, enabling transparent utilization of existing
protocols with intent-optimized configurations.

 In our evaluation, we compare our intent-aware transport-
layer services against traditional approaches in a live
volumetric streaming application, emphasizing multi-user

 Vu San Ha Huynh†*, Peng Qian†*, Ning Wang*, Carl Udora*, Rahim Tafazolli*

∗5GIC & 6GIC, Institute for Communication Systems (ICS), University of Surrey, Guildford, Surrey, U.K.
 Email:{v.sanha, peng.qian, n.wang, cu00029, r.tafazolli}@surrey.ac.uk

Synchronisation. Our system significantly improves
performance in key metrics, predicting appropriate
protocols and configurations to achieve desired application
performance while balancing trade-offs.

The remainder of the paper is organized as follows: Section II
reviews related literature, Section III details the framework
architecture and DRL algorithm, Section IV analyses performance,
and Section V concludes the paper.

II. LITERATURE REVIEW

Intent-driven networks (IDN) [10] is a recent approach that
allows expressing service needs ("intents") through declarative
or imperative mechanisms, abstracting away the complexity of
their implementation. These intents, with the right level of
abstraction, can comprehensively describe services or
applications and their requirements, which are then
communicated to lower network layers. IDN starts with a
semantic language to represent intents, converting them to
primitives and mapping them to executable policies. These
policies are verified and deployed to the network to fulfil the
original service intents. However, a unified and clear definition
of IDN is still lacking, and its enabling techniques are under
further exploration.

In recent years, various intent-aware and protocol-
independent transport layers have been introduced, including
IETF TAPS [11], NEAT [12], Socket Intents [13], and
Congestion Control Plane (CCP) [14], aiming to enhance the
flexibility and extensibility of the transport layer. IETF TAPS
[11], a recent standard body effort, strives to replace the
conventional system-level socket API with a new transport-
layer socket API, enabling applications to articulate their needs
and preferences for optimal transport-layer service selection.
CCP [14], another recent advancement, modifies parameters
like congestion window and sending rate in user space to
customize the congestion control of underlying TCP
implementations. Hybrid Information-Centric Network (ICN)
Transport [15] leverages the ICN architecture, using prefixes in
content naming to communicate application intents, such as
real-time audio or video streams, and tags like "wireless,"
"cellular," "interactive," or "reliable" to indicate preferences.
These tags are not static but can be dynamically updated.
Researchers in [16] explored deep reinforcement learning to
adjust TCP's congestion window, ensuring applications achieve
their desired delays in dynamically changing networks.
Leveraging advancements in network programmability and
virtualization, numerous other cross-layer application intent
awareness efforts have been proposed, including DiffServ [17],
TMForum APIs [18], ETSI NFV Network Service Descriptor
[19], and ETSI Mobile Edge Application Descriptor [20]. These
efforts span data paths, user and kernel spaces, stream-byte and
message-based approaches, demonstrating the ongoing
innovation in intent-driven networking.

Although significant progress has been made in the next-
generation intent-aware transport layer, available requests or
API calls are still constrained by static APIs. CCP [14], AI-
based congestion control [16], and transport layer adaptation
[27] often rely on a specific transport protocol (e.g., TCP or
QUIC) or predefined application requirements (e.g.,
throughput, delay), limiting their generality and adaptability.

Research on IDN [10], emphasizing intent taxonomy and
lifecycle functions, and Hybrid-ICN Transport [15] are ongoing
but lack unified standards, implementations, verifications, and
transport orchestration support. This underscores the need for
further advancements in transport layer architecture to fulfil the
demands of future user intent-aware networks.

III. INTENT-AWARE TRANSPORT-LAYER SERVICES

In this section, we describe the design of our intent-aware
transport-layer architecture tailored for volumetric applications in
which end users may express different intents on the applications
in specific use case scenarios.

A. System Overview

We propose intent-aware transport-layer services that allow
the extensible and flexible use of any transport-layer protocols
with minimal modification at the application’s source code (see
Fig. 1). The connection handler is the key component to receive
the configuration policy translated from user intent. By
capturing the packets at the socket layer and redirecting them
from the traditional data path, this connection handler allows to
autonomously configure different connection properties (e.g.
congestion control algorithm, congestion window (cwnd),
initial window (IW), etc.) in response to different or changing
of user intents in human-oriented immersive applications.
Meanwhile, useful information from captured packets will be
stored as input statistical data for a DRL module to train and
generate an optimal configuration policy. These real-time
configuration policies tailored for different user intents will be
loaded by the transport layer policy manager and then instructed
to the underlying protocol stack accordingly through the
connection handler. Since the connection handler manages pre-
activated sockets of different transport layer protocols (e.g.,
TCP, QUIC, SCTP), it will first select one of the protocols, and
then configure its parameters. Moreover, the selected transport-
layer configuration towards which the data path redirection is
executed may either already exist in the Operating System (OS)
or not, therefore in order to maintain reliability, our intent-
aware transport-layer architecture integrates a systematic
fallback to the application’s original transport-layer protocol in
any failure situation (middleboxes interferences, etc.).
Consequently, this architecture is not limited to any particular

Figure 1. Intent-aware transport-layer services architecture for volumetric
streaming environments

Figure 2. Simplified Workflow of the intent framework

implementation of the main execution loop which could be
using eBPF [21] (for Linux kernel) or a customized datapath
library (e.g. libccp [14]).

Fig. 2 shows an overview of intent-aware transport-layer
services at the sender and receiver sides. Application
performance targets or requirements in a specific intent are
receiver-driven and can be flexibly expressed via our designed
transport-layer API both at the beginning or in the middle of the
data transmission session. The sender acquires frame request
packets from the receiver and updates its intent map to keep
track of applications with its corresponding user intent. Also,
it performs a transport-layer protocol selection, and
configuration optimization process with an aim to satisfy the
requests of receivers. Application at the receiver side is allowed
to express its requirement through our transport-layer API
which updates the intent map at run time. The intent map allows
us to map applications with their intent-dependent requirements
as well as with its most suitable transport-layer protocols to
satisfy these targets at a low computational cost. Packets
received from the network card will be redirected to eXpress
Data Path (XDP) [21] to perform high-speed packet processing
before mapping back to the corresponding application. These
packets received are also used for network profiling for future
analysis.

In terms of detailed function implementation, at both the
sender and receiver sides, the system interrupts the data path of
the application’s original transport-layer protocol (e.g. TCP)
and takes control of the packets for our intelligent processing
before the network stacks. The intent-aware transport-layer
services capture system calls and network events (e.g.
sendmsg(), recvmsg()) and then run our own safety-verified
data-path programs at both user and kernel space. Assuming a
host running the Linux operating system, the implementation
using eBPF [21] hookers attached to root cgroupv2 [21] will
enable every incoming and outcoming packet of all processes
on the host to be captured and processed. With the assistance of
a locally maintained intent/socket map, the socket and message
controller are able to identify the specific socket and process to
which the data packets should be forwarded. This map is
updated in the socket and message controller every time a
connection is established or closed.

B. Deep Reinforcement Learning-Based Intent-Aware
Transport-Layer Protocol Selection & Configuration

Based on the filtered packet information, we utilize a deep
reinforcement learning approach [9, 22, 25] in our integrated
transport policy manager to automatically identify the most
suitable set of transport-layer protocols and configurations to
satisfy the user intent. We manage to investigate whether
reinforcement learning “trial-and-error” approaches could be
used to enable transport-layer intelligence where our
considered scenarios have non-guaranteed global knowledge
and a certain degree of dynamics in application intent-
dependent requirements.
Input sample: The inputs into the transport policy manager
comprise network characteristics profiling from the receiving
packets (e.g., normalized round trip delay, packet loss). Based
on that, the transport policy manager builds a table of network
state and state transitions. The observed Quality-of-Service
(QoS) metrics are utilized to infer the objective application-
specific performance to which we compare the expected
performance in the reward function. As the intent-aware
transport policy manager maintains a historical record of state-
action-reward tuples ൏ 𝑠௜ ,𝑎௜ , 𝑟௜ ൐ , we describe our novel
design of state and action spaces, and the reward function of the
agent as follows:
State space: state 𝑠௜

௧ of endpoint 𝑛௜ at time t is 𝑠௜
௧ ൌ ሼ𝑢௜

௧ሽ where
𝑢௜
௧ ൌ ሼ𝑢௜,଴

௧ , 𝑢௜,ଶ
௧ , … , 𝑢௜,௞

௧ ሽ as the QoS and application-specific
performance utility values observed. These QoS and
application-specific performance utility values are bounded
histories of statistics from received packet acknowledgement,
and also the application layer feedback if it can be retrieved
from the user intent interface. We propose to avoid metrics that
are expected to be highly variable across connections just
because of variations in link properties (e.g. deteriorated
wireless signals).
Action space: action 𝑎௜

௧ of endpoint 𝑛௜ at time t is defined as:
𝑎௜
௧ ൌ ሼ𝑝௜

௧ , ∀𝑝 ∈ 𝑃ሽ, 𝑝௜
௧ ൌ ሾ0,1ሿ indicating a list of transport-

layer candidates associated with different configurations (e.g.
Congestion Control (CC), cwnd, etc.). Our system model
encourages exploration and avoids repeatedly selecting a
particular set of transport parameters by assigning equal
probabilities to actions having relatively the same Q-values. We
manage to explore the action space where the transport policy
manager selects the most suitable transport-layer protocols (e.g.
TCP, UDP, QUIC, SCTP, etc.) and its transport-layer features
(e.g. congestion control algorithms, cwnd, IW) based on the
observed states to maximize the reward function. Our intent-
aware transport-layer policy manager treats continuous cwnd
configuration and discrete CC configuration separately. It is due
to the huge space of the continuous action (i.e., the value of
cwnd) that the DRL-agent can do at different times. Thus, in
order to improve the feasibility and efficiency, we let the DRL
agent find the best values of the action based on the parameters
calculated by the underlying transport protocol (e.g. TCP).
Thus, we propose a function that relates cwndୢ୰୪ value to the
value of cwnd that the DRL-agent receives periodically from
the state block:

cwndୢ୰୪ ൌ cఈ ൈ cwnd ሺ1)

where c is a constant factor and −1 ≤ α ≤ 1. Instead of searching
the entire space, this simplifies the exploration phase and
improves the learning convergence.

Reward space:
 𝑟௜
௧ ൌ െሺ𝑟𝑒𝑞_𝑢𝑡𝑖𝑙𝑖𝑡𝑦௜

௧ െ 𝑐𝑢𝑟𝑟_𝑢𝑡𝑖𝑙𝑖𝑡𝑦௜
௧ሻ reflecting the gap

between the intent-dependent request and the current
experience. The reward model aims to reflect application-
specific performance, possibly under QoS and other constraints,
and the policy design that maximizes long-term rewards. As the
reward may depend on the requirements of different
applications, we aim to generalize the reward function. We
prefer objective application-specific performance evaluation
over subjective application-specific performance evaluation to
increase the level of automation without manual expression from
the application layer (e.g. Mean Opinion Score). QoS metrics
are prominently used in the automated application-specific
performance evaluation, thus we utilize WFL (Weber-Fechner
Law) [23] and IQX (Exponential Interdependency of QoE/QoS)
[23] to calculate reward utility function:

 qoe୧,୮

୲ = γp × log(αp × qos୧
୲ + βp) + θp (2)

for positive QoS metrics and

qoe୧,୬
୲ = γn × eαn × ୯୭ୱ౟

౪ + βn + θn (3)

for negative QoS metrics in which 𝛼, 𝛽, 𝛾 and 𝜃 are constant
parameters to fine-tune QoS/ application-specific performance
relationships. The reward utility function is:

 𝑟𝑒𝑞_𝑢𝑡𝑖𝑙𝑖𝑡𝑦௜

௧ ൌ 𝛼𝑞𝑜𝑒௜,௣
௧ െ 𝛽𝑞𝑜𝑒௜,௡

௧ (4)

Note that some application-specific performance
requirements may conflict with each other (e.g. high Frame-Per-
Second (FPS), low playback latency), thus we utilize 𝛼, 𝛽 as the
weighting factor controlled by the specified requirement priority
from the application.

Moreover, we propose to utilize the soft actor-critic based RL
[22] approach which optimizes a stochastic policy in an off-
policy manner. The actor-network controls the transport-layer
configuration decisions/actions, and the critic network
evaluates and provides feedback on the chosen decisions to
update the transport-layer policy. Soft actor-critic [22,25]
allows our intent-aware transport-layer services to explore the
continuous action space of cwnd while being more sample
efficient and more robust to brittleness in convergence
compared to other approaches.

Regarding other components in the DRL network structure,
the input is the state of transport properties and current
QoS/QoE, and with two fully connected layers, we also utilize
long short-term memory (LSTM) [24] before feed parameters
to pre-training actor and critic networks. This allows our intent-
aware transport-layer services to make time-series predictions
in the environment of a large input space [9]. In actor-critic
based approach, the actor-network controls how the end host
behaves by learning the optimal policy from a given state as

input and aims to make the best transport-layer configuration
decisions.
 The critic network evaluates the action by computing the
value function. We utilize soft actor-critic which makes use of
three functions: a state value function V, a soft Q-function Q,
and a policy function 𝜋 . We train the three function
approximators in line with [22, 25] for discrete transport-layer
protocol and CC selections. For continuous transport-layer
adaptive configuration, the three function approximators are
trained as in [22, 25].

 We provide the pseudo-code for our intent-aware transport-
layer policy manager in Table 1. First, it updates all the network
functions during each epoch in an experience-replay manner.
After the actor-critic based training, the actor network can be
used to make transport-layer configuration decisions. More
specifically, the process consists of two phases: 1) Offline
training: the actor and critic networks are built and pre-trained
with a number of historic transition samples in order to achieve
relatively good initial parameters for phase 2. 2) Online control:
start with a set of parameters initialized in phase 1, in each epoch
t, the agent observes the state 𝑠௜

௧ and obtains the Q-value from
the actor-critic networks. Then, a list of action 𝑎௜

௧ are selected
based on 𝜋 -policy, whether to choose a specific transport
protocol, congestion control or to increase and decrease
congestion control window to a certain amount. The transport-
layer policy manager is encouraged to explore different possible
actions that assign equal probabilities to actions that have
relatively similar Q-values. After the action 𝑎௜

௧ is executed, the
agent observes the reward 𝑟௜

௧ and next state 𝑠௜
௧ାଵ on which the

action policy keeps updating for the next epoch time t+1. The
transition (𝑠௜

௧ , 𝑎௜
௧ , 𝑟௜

௧ , 𝑠௜
௧ାଵ) is stored in the memory at the end

of each time period. Note that even though the future transport-
layer services should be able to holistically adapt against both
user-intended requirements and dynamic network conditions
which will result in rapid exploration of huge action space and

complexities, in this paper, we focus on the flexible intent of
application where there can be multiple users, especially they
require for performance Synchronisation, even for the same
application type. The intelligent transport layer should be able to
understand the actual requirements of the application and adapt
its configuration to satisfy them.

IV. REAL-LIFE PERFORMANCE EVALUATIONS

This section presents a multi-criteria evaluation of our intent-
aware transport-layer intelligence, focusing on the live
volumetric streaming application and its performance with
different sets of application requirements and intents.

A. Volumetric streaming application overview

 The live volumetric system captures 3D objects from various
locations using multiple sensor cameras like Azure Kinect.
Each camera sends colour-depth images converted to 3D point
clouds to a server. The server receives frames from different
clients, processes them, and creates a rendered hologram. This
technology enables viewing 3D objects from different angles,
making it applicable in various areas such as teleconference,
telecommunication, tele-training, entertainment, and
healthcare. The paper evaluates the performance of the intent-
aware transport-layer services in a predefined scenario:
Immersive bidirectional interactions and live teleporting of
multiple objects from different network locations prioritize
minimizing the time gap between frames arriving at the server
from different sources to ensure Synchronisation. The paper
mainly focuses on the flexible intent of the application with
static but different access delays. It briefly mentions evaluating
the transport-layer services in the presence of more complex

and dynamic network conditions, leaving the adaptability to
future work. Throughout the evaluation, the minimum Round-
Trip Time (RTT) of the network is set to 25 ms, and the buffer
size is 128 KB.

We design the learning model of the transport-layer policy
manager using Python and Tensorflow [26], running on a
machine with an Intel i7 3.2 GHz CPU card, GTX 1060 GPU
card, and 32GB memory. For parameters of the proposed DRL
network. we set the discount factor as 0.99 and the learning rate
for both the actor-critic networks is 1e-4. The hidden layers’
size is 128. The number of iterations is 10000. We use 70% data
for training and 30% of the data for evaluation.

B. Intent-aware congestion window configurations

Then we evaluate the performance impacts of our intent-
aware transport-layer services on congestion control
configurations (i.e. cwnd) tailoring for the predefined scenario.
We evaluate and compare our intent-aware transport-layer
services’ decision-making against the most popular TCP
scheme: TCP Cubic [6], with no intent awareness in its
algorithm. In this scenario of live volumetric streaming (see
Fig.3), the server receives frames from two different sources:
source 1 with 25ms RTT and source 2 with 50ms RTT. Due to
the frame Synchronisation requirements, the target is to
minimize the time gap between frames coming from different
sources with the upper threshold for the time gap being 50ms.
As shown in Fig. 3d-f, our intent-aware transport-layer services
could handle not only one-to-one sender-receiver
communication but also many-to-one communication for future
application usage. In order to reduce the time gap between

(a) (b) (c)

(d) (e) (f)

Figure 3. Live volumetric streaming performance with: TCP without intent awareness (a-c) and intent-aware transport-

layer services (d-f) in bi-directional multisource live streaming use case which prioritise the frame arrival time.

frames sent from different sources where source 1 has a shorter
path compared to source 2, the proposed transport-layer
services are able to adaptively and strictly minimize the queuing
delay in the longer path while being more relaxed in the shorter
path. At some certain events in source 1, the predicted cwnd is
adaptively configured higher than the calculated Cubic cwnd
(Fig. 3f) which results in relatively higher playback latency in
the shorter path. As a result, this allows the frame time gap
between the two sources to keep under 40 ms (Fig. 3e) while
both maintain above 20 average FPS performance (Fig. 3d).
This comes with the cost of playback latency has been
compromised in source 1 (Fig. 3e) in order to achieve the fully
synchronized frames from multiple sources [10, 11]. On the
other hand, when both sources are running traditional TCP with
no intent awareness, the frame arrival time gap varies from 20
ms to 120 ms. The average time gap is 72 ms which exceeds
significantly the 50 ms target resulting in severe frame
misalignment [11]. In the worst-case scenario, the frame arrival
time gap between two clients running traditional TCP Cubic
with no intent awareness can go up to 100 ms which is two to
three times higher compared to the time gap between the clients
running our intent-aware transport services.

V. CONCLUSION

In this paper, we introduce a transport-layer intelligence with
application intent awareness, enabling complex applications to
express their intent to the transport layer. This innovation
supports immersive mixed-reality applications with transparent
deployment and configuration of transport-layer protocols. We
evaluate our intent-aware services, emphasising frame
synchronisation in a multi-party scenario, and demonstrate that
our system can autonomously predict the most suitable
protocols and configurations to balance complex requirements
and achieve application performance targets.

VI. CONTRIBUTION AND ACKNOWLEDGEMENT

Vu San Ha Huynh†, Peng Qian† are co-first authors of this
work. This work is funded by SPIRIT project, Grant Agreement
101070672, and the link is https://www.spirit-project.eu/.

REFERENCES

[1] Qian, P., Huynh, V.S.H., Wang, N., Anmulwar, S., Mi, D. and
Tafazolli, R.R., 2022. “Remote Production for Live Holographic
Teleportation Applications in 5G Networks”. IEEE Transactions on
Broadcasting. 2022.

[2] I. Selinis, N. Wang, B. Da, D. Yu and R. Tafazolli. “On the Internet-
scale streaming of holographic-type content with assured user quality
of experiences”. IFIP networking conference (networking), pp. 136-
144. IEEE. 2020.

[3] S. Anmulwar, N. Wang, A. Pack, V. S. H. Huynh, J. Yangy, R.
Tafazolli. “Frame Synchronisation for Multi-Source Holograhphic
Teleportation Applications - An Edge Computing Based Approach”.
IEEE International Symposium on Personal, Indoor and Mobile
Radio Communications. 2021.

[4] R. Stewart and C. Metz, “SCTP: New Transport Protocol for TCP/IP,”
IEEE Internet Comp., v. 5, n. 6, pp. 64–69. 2001.

[5] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic, D. Zhang, F.
Yang, F. Kouranov, I. Swett, J. Iyengar, et al. “The QUIC Transport
Protocol: Design and Internet-Scale Deployment”. Proceedings of the
Conference of the ACM Special Interest Group on Data
Communication. ACM, pp.183–196. 2017.

[6] I. R. Sangtae Ha and L. Xu. “Cubic: A new TCP-friendly high-speed
TCP variant”. SIGOPS-OSR, 2008.

[7] N. Cardwell, Y. Cheng, C. S. Gunn, V. Jacobson, and S. Yeganeh.
“BBR: Congestion-Based Congestion Control”. In ACM Queue.
2016.

[8] Qian, Peng, Ning Wang, and Rahim Tafazolli. "User Intent Driven
Path Switching in Video Delivery-An Edge Computing Based
Approach." IEEE INFOCOM 2022-IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS). IEEE, 2022

[9] Volodymyr et al. "Human-level control through deep reinforcement
learning. " Nature (2015).

[10] L. Pang, C. Yang, D. Chen, Y. Song, and M. Guizani. “A survey on
intent-driven networks”. IEEE Access, pp 1–1, 2020.

[11] T. Pauly, B. Trammell, A. Brunstrom, G. Fairhurst, C. Perkins, P. S.
Tiesel, and C. A. Wood. An Architecture for Transport Services.
Internet-Draft draft-pauly-taps-arch-12. Internet Engineering Task
Force https://datatracker.ietf.org/doc/html/draft-ietf-taps-arch-12
Work in Progress. 2022.

[12] N. Khademi et al., “NEAT: A platform- and protocol-independent
Internet transport API,” IEEE Commun. Mag., v. 55, n. 6, pp. 46–54.
2017.

[13] P. S. Tiesel, T. Enghardt, M. Palmer, and A. Feldmann.“Socket
intents: Os support for using multiple access networks and its benefits
for web browsing”. arXiv preprint arXiv:1804.08484. 2018.

[14] Akshay Narayan et al. “Restructuring endpoint congestion control”.
Proceedings of the SIGCOMM 2018, pp 30–43. ACM, 2018.

[15] M. Sardara, L. Muscariello, and A. Compagno, ‘‘A transport layer
and socket API for (h)ICN: Design, implementation and performance
analysis,’’ Proc. 5th ACM Conf. Inf.-Centric Netw. (ACM ICN), pp.
137–147. 2018.

[16] S. Abbasloo, C. Y. Yen, and H. Jonathan Chao. “Wanna Make Your
TCP Scheme Great for Cellular Networks? Let Machines Do It for
You!”. IEEE J. Sel. Areas Commun. 39, 1, pp. 265–279.
https://doi.org/10.1109/JSAC.2020.3036958. 2021

[17] A. Bahnasse, F. E. Louhab, H. A. Oulahyane, M. Talea, and A. Bakali,
‘‘Novel SDN architecture for smart MPLS traffic engineering-
diffserv aware management,’’ Future Gener. Comput. Syst., v. 87, pp.
115–126. 2018.

[18] TM Forum. Tm forum - how to manage digital transformation, agile
business operations & connected digital ecosystems.

[19] Network Functions Virtualisation ETSI. Management and
orchestration network service templates specification. Technical
report, DGS/NFV-IFA014.

[20] ETSI. Multi-access edge computing (mec); framework and reference
architecture, 2019. P.

[21] M. A. M. Vieira, M. S. Castanho, R. D. G. Pacífico, E. R. S. Santos,
E. P. M. C. Júnior, and L. F. M. Vieira, ‘‘Fast packet processing with
eBPF and XDP: Concepts, code, challenges, and applications,’’ ACM
Comput. Surv., v. 53, n. 1, pp. 1–36, 2020.

[22] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, ‘‘Soft actor-critic:
Off-policy maximum entropy deep reinforcement learning with a
stochastic actor,’’ 2018, arXiv:1801.01290. [Online]. Available:
http://arxiv.org/abs/1801.01290.

[23] Reichl, S. Egger, R. Schatz, and A. D’Alconzo, “The logarithmic
nature of QoE and the role of the Weber–Fechner law in QoE
assessment” . Proc. IEEE ICC, pp. 1–5. 2010.

[24] S. Hochreiter and J. Schmidhuber, ‘‘Long short-term memory,’’
Neural Comput., vol. 9, no. 8, pp. 1735–1780, 1997

[25] P. Christodoulou, ‘‘Soft actor-critic for discrete action settings,’’
2019, Online].Available: http://arxiv.org/abs/1910.07207.

[26] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, and M. Kudlur, ‘‘Tensorflow: A
system for large-scale machine learning,’’ in Proc. OSDI, 2016, pp.
265–283.

[27] Peng Qian, NingWang, and Rahim Tafazolli. Achieving robust
mobile web content delivery performance based on multiple
coordinated quic connections. IEEE Access, 6:11313–11328, 2018.

