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Abstract—Volumetric video is an emerging media application
that enables the projection of people or objects into a virtual
space in a real-time and immersive manner. Unlike traditional
video, live volumetric video streaming in virtual space allows
users to interact with teleported objects with a wide range of in-
tentions. However, a significant technical challenge in this context
is the need for real-time network adaptation driven by diverse
user intents (e.g., user’s movement in the virtual space), which
may instantly change the streaming’s network demand. To ensure
a satisfactory perceived Quality of Experience (QoE) in the
face of both intent and network condition uncertainty, we have
developed a novel solution framework that allows offline user
intent registration and online user intent capture with necessary
path adaptation. This path adaptation module is empowered by a
novel Multi-Arm Bandit (MAB) based path selection algorithm,
with joint consideration of probed application delay and network
congestion. Through real and extensive experiments, we have
validated the effectiveness of our proposed framework in assuring
user QoE under various network conditions and for different user
intent scenarios.

Index Terms—Volumetric streaming, extended reality (XR),
edge computing, user intent

I. INTRODUCTION

Volumetric video streaming is a novel immersive application

that offers six degrees of freedom (6DoF) visual experience,

allowing the user to engage in rich interactions to adjust

viewing orientation, distance, and interested objects. However,

to livestream a volumetric object that compromises a million

points over a modern network faces unprecedented challenges.

On the one hand, transmission and computation capabilities on

both sides of the network and user devices have been over-

whelmed by the unaffordable point scale, reaching up to GB/s

levels [1]. On the other hand, end devices are being enhanced

by interactive interfaces to capture human action (e.g., head

motion, random walk, gesture, and eyeball movement). The

dynamic and unpredictable nature of user intent behavior can

significantly alter the application’s network demands in terms

of bandwidth and end-to-end latency [2]–[4]., leading to a

degraded user experience when network resources fail to be

adaptive to these rapid changes in data flow.

Fig.1 illustrates the scenario of a remote live volumetric sce-

nario. One or multiple volumetric cameras placed at a remote

location capture a car model, and the real-time raw frames

are streamed to an edge node closer to the content source.

Upon receiving the raw frames, the edge node combines them
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Fig. 1: Concept of remote live volumetric streaming with user intent change
(movement)

into a multi-viewpoint cloud frame and transmits them to the

end user through a pre-allocated path in a public transport

network. During live streaming, if the viewer is “far away”

from a volumetric object in his field of view, streaming at

a lower resolution is sufficient to deliver satisfactory image

quality with a proper point density [3], [5]. Once the user

gradually approaches the object, the original point density

becomes visibly sparse, therefore a higher resolution is re-

quired to guarantee the same point density in the same area.

Consequently, this demand for a high-resolution level can lead

to elevated data rates, necessitating bandwidth increases by

more than an order of magnitude in immersive applications [1].

In modern network management, to ensure efficient use of net-

work resources and compliance with business constraints, the

stream with the lowest resolution is always allocated to a path

with limited resources [6], [7]. Therefore, verifying whether

the other higher resolution levels can be delivered with a robust

user experience on the current path or should be re-directing

it to an optimal path with adequate resources becomes an

essential task, especially upon the occurrence of a user intent

requesting a higher resolution level. Towards this end, there

are two technical challenges for enabling such intent-aware

network adaptation. First, the network needs to timely capture

the incoming user intent in immersive volumetric video ap-

plications and instantly understand the accurate new network

requirements. Secondly, in modern edge/cloud backhaul links,

disparities between multiple paths and random congestion/loss

still exist due to geometric differences or varying loads [8],

[9]. Therefore, the network should dynamically pair a potential

viewer intent (e.g., required resolution levels) with the proper



paths that have sufficient resources, with the awareness of real-

time link conditions.

These two challenges inspire us to propose a user intent-

driven solution based on the Software-Defined Networking

(SDN) paradigm. In this framework, user intents can be en-

coded as simple offline negotiated codepoints and categorized

into groups that present different network resource demand

levels. Through a well-defined API between the network edge

and the user device, these codepoints can be inserted into

customized Segment Routing over IPv6 (SRv6) packet header

and expressed to the network edge whenever there is any on-

the-fly change of user intent during volumetric teleportation

session. In order to achieve seamless online path/intent pairing

for optimized stream re-direction, the network edge leverages

a lightweight probing mechanism to exchange tailored probing

packet groups on candidate paths and also a Multi-Arm Bandit

(MAB) path selection algorithm to obtain an optimal path for

each registered user intent group, which can be immediately

applied once a user intent is detected. We implemented the pro-

posed framework and evaluated different user intent types with

a wide range of network condition scenarios. The experiment

results demonstrate that our proposed solution can successfully

capture and identify a wide range of user intent types, thereby

ensuring a satisfactory user Quality of Experience (QoE). This

improvement is highlighted by significant enhancements in key

performance metrics such as Frames Per Second (FPS), frame

delay, and throughput, particularly in scenarios where delay

and loss occur on specific network links.

This paper is organized as follows: In section II, we provide

a literature review of the existing effort of optimizing volu-

metric content delivery and various network frameworks to

enable application-aware information with the help of modern

routing techniques. In section III, we present our framework

with the awareness of instant user intent and corresponding

probing and MAB routing algorithms. Then in section IV, we

explain our implementation of the framework and evaluation

results, and finally conclude this work in section V.

II. RELATED WORKS

A. Point Cloud streaming and optimizations

To mitigate the challenges of high data transmission for

volumetric streaming, recent advances have embraced edge

computing to optimize content delivery based on viewer’s

interactions, such as viewer’s location and viewpoint. The

authors in [10] employ edge servers to convert volumetric

videos into 2D views, reducing motion-photon latency through

predictive modeling of user head movements. Similarly, the

authors in [11] leverage machine learning techniques to split

a large-sized frame into different sub-frames of different

viewpoints and conduct customized selection according to the

viewer’s viewpoint. The implementation shows that this edge

server can improve QoE by up to 85%. Parallelly, other Arti-

ficial Intelligence (AI) driven approaches focus on extracting

essential video features offline [12], thus transmitting minimal

data while preserving content integrity at the online phase.

Further innovations include filtering techniques [5] that reduce

data transmission to essential metadata, enabling high-quality

content reconstruction on mobile devices. Advanced method-

ologies in [13], [14] employ down sampling and reinforcement

learning to match features with network conditions effectively,

while the authors in [14] explore semantic transmission for

volumetric content, drastically reducing data volumes. How-

ever, by acknowledging the inevitable long delay (e.g., seconds

even minutes for a single frame) for AI-based encoding

and decoding [16] which is inherent in live streaming, the

current focus shifts towards enabling lightweight compression

strategies [1], [5] that facilitate real-time streaming without

compromising QoE. However, these initial efforts lack the

joint consideration of the varying bandwidth demands and

inevitable fluctuations in network quality and user behavior,

which are the key issues that our framework aims to address.

B. Network uncertainty and application-aware therapy in

modern networks

In modern network topologies, uncertainties such as packet

loss and latency are still widespread. To ensure that video

applications deployed on top of these networks can achieve

stable performance, a variety of routing-based methods and

frameworks have been proposed and implemented. For in-

stance, in a study based on multiple path measurements from

the East to the West Coast of the United States [9], not only

severe latency and packet loss fluctuations were observed,

but also the default allocated path’s performance can be 30%

worse than another alternative path. Similarly, packet losses

exceeding a 0.1% probability and latency jitters over 100ms

were also observed in the global overlay Alibaba Content

Delivery Network (CDN) network [8]. Towards a satisfactory

streaming service experience, a centralized SDN orchestrates

topology and link management, optimizing video streaming

by algorithmically selecting dual alternative paths based on

latency and packet loss metrics, significantly mitigating video

stalling instances [8]. In the research findings of [17], targeting

link failures or congestion can be observed in the topology

of cloud networks. To overcome this network uncertainty, a

method based on eBPF for detecting redundant links using

simple ping packets over multiple paths was proposed. This

allows network flows to be correctly and swiftly rerouted to

alternative paths in response to link failures. Furthermore,

architectures for application-aware rerouting based on SRv6’s

flexible header encapsulation have been investigated. For in-

stance, the authors in [18] discuss an SDN-based architecture

enabling end hosts to request customized paths, enhancing

network efficiency through the innovative use of SRv6, which

allows for programmable source routing by appending an IPv6

header with segment header extensions. This technique is

further leveraged in [19], where SRv6’s variable header space

encapsulates application characteristics, facilitating network

functions to deliver tailored application flows. Contrary to

existing approaches, our approach enhances volumetric video

streaming by using SRv6 for conveying encoded user intent

requests, avoiding the reduced throughput by extra headers on

the video data frame [19]. We also designed a special routing



Fig. 2: The proposed User intent-aware framework

algorithm that adapts to different video resolution levels, user

intents, and changing network conditions, providing a more

customized solution.

III. INTENT-AWARE NETWORK ADAPTATION

FRAMEWORK

In this section, we illustrate the proposed intent-aware

framework, which aims to solve two key problems: 1) How

to seamlessly capture user intent and understand its potential

change to flow requirement. 2) How to apply a proper network

treatment (e.g., deploy a proper routing path) for the incoming

user intent instantly. Toward this end, we proposed an SDN-

based framework with an offline intent registration interface

and an online intent capture interface deployed at the network

edge nodes, with necessary path redirection decisions accord-

ing to real-time path conditions decided by edge nodes. (see

Fig.2).

A. Negotiating user intent encoding policy at the offline phase

The offline interface between the live volumetric application

platform and the network framework (see the left-up corner in

Fig.2) is responsible for user intent registrations by using a

negotiable encoding policy that represents each user intent.

This policy comprises an 8-digit code in the SRv6 header’s

IPv6 flow label: the initial four digits categorize user intent

types and the subsequent four denote network resource lev-

els determined collaboratively by content providers and the

network. From a network monitoring perspective, user intent

behaviours can be generally categorized into the following

types: 1) Change in frame resolution: during a live volumetric

meeting, the focus of attention may shift from a low-resolution

object to a higher-resolution object upon the host’s request.

Similarly, the application can adjust the object’s resolution

based on a user’s proximity, increasing it for closer distances

and vice versa. 2) Change in source channel: users may

instantly enter another scenario, temporarily disconnecting

their remote source and switching to another streaming con-

nection. 3) Change in frame request interval: for specific object

surveillance, users may request a lower frame rate initially but

switch to a higher frame rate when a special event occurs.

To trigger these intent types, modern extended reality devices

like HoloLens 2 expose various interfaces to capture gestures,

eyeball tracking, and voice commands. Therefore, it is feasible

to aggregate and translate such human-related inputs into

the coding level, and then encapsulate them in the encapsu-

lated content request packet header. Regarding the network

requirements for each resolution level, the application provider

predefines the point density and then negotiates with the SDN

controller to agree on the permissible network specifications.

For instance, the low-resolution Near-Field-Of-View (NFOV)

containing tens of thousands of points requires 60 Mbps and

30 ms latency for full FPS and satisfactory frame delay [1]

and will be assigned intent as 0x11. The High Definition (HD)

resolution level, which demands 300 Mbps and 20 ms latency

for the same performance, can be marked as intent 0x12. Since

various user intents might have similar network needs, they

can be consolidated into fewer demand groups. For example,

resolution changes (intent 0x1) and channel switches (intent

0x2) can be grouped if the demanding resolution is NFOV as

0x11 and 0x21.

By storing such user intents and network requirement

mapping rules at the local intent registration function, the

SDN controller can facilitate performance analysis history

and optimization policy function to generate tailored flow

monitoring rule and route optimization policy for each user

intent type, and then instruct the underlying edge nodes to

start to execute these policies accordingly. These policies can

contain application information of frame size, frame interval of



each type of intent, and specific IP 5-tuple of registered flow,

a predefined route set that fits each intent group, and hyper-

parameters that will be used in the MAB routing probing and

selection algorithm later. Meanwhile, the application provider

can also offline update its application software on the user

side to enable the SRv6 encapsulation feature along with the

application message (e.g., HTTP message) once user intent

triggers. In detail, the IPv6 address of the network edge node

will be set as the target IPv6 address, with the 20-bit long flow

label in the IPv6 head space to indicate the user intent type and

corresponding network resource requirement level. It is worth

noting that compared to other online application negotiated

frameworks, this bit encoding design has several advantages:

1) First, encoding user behavior in offline negotiated coding

policy can prevent the risk of exposing user bio-information

(e.g., eye tracking, physical position) through online packet

inference, while other methods also explicitly reveal detailed

bandwidth and delay requirements on the packet header. 2)

Second, directly mapping coding bits to pre-defined network

resource levels can eliminate the online routing computation

overhead, while other solutions [18], [19] still require online

computing for incoming packets. 3) Initiating intent from the

client side is sticking to the principle of mainstream applica-

tion protocol. For instance, in HTTP/2, any push content from

a server should require the client’s acceptance in advance [20].

B. Processing online user intent and performing network

adaptation

Then we use a user proximity-driven resolution change

scenario to illustrate the online intent processing procedure

in Fig.3. On the network side, by receiving intent encoding

policy and target flow level IP 5-tuple information from the

SDN controller, the two edge nodes deployed at the viewer

side and source side are responsible for capturing incoming

SRv6-based intent packets and performing necessary network

path adaptation. For instance, once a user is moving closer

to a target object and the application on the helm decides to

change to Full HD resolution, it will send a packet with a 0x13

flow label to the viewer side edge node. Then the viewer side

edge nodes will extract the IPv6 flow label and conduct intent

verification. The intent verification policy is pre-instructed

from the SDN controller since the SDN controller is able to

load the user’s network registration information like mobility,

billing information, and registered QoS level through a proper

interface.

Fig. 3: Online User intent processing (quality switch)

Especially, towards a minimized parsing and forwarding

time, the edge node adopts an XDP eBPF program [21] for

parsing the incoming IPv6 header by inspecting the sk buff

struct. In detail, first, the edge node can locate ethhdr via

skb− > data object which indicates the layer 2 part of the

packet, and locate IP layer protocol and position (e.g., IPv6

header in SRv6) via ethhdr− > protocol. By moving the

pointer to the SRv6 header, it can extract the flow label from

the 12 to 31 bits, and match this to a predefined local intent

encoding policy stored. If there are no predefined encoding

bits, the SRv6 header will be removed, and the packet will

be forwarded directly to the content source. If the content is

matched and the XDP user space program which maintains the

up-to-date user information successfully verifies such intent,

it will be forwarded to the source side edge node with an

XDP PASS action. The source-side edge node closer to the

teleportation source is responsible for probing the pre-planned

paths provided by the SDN controller and maintaining an

optimal path set for different user intent types. When there

is no intent packet received, it conducts path probing and

executes an MAB routing algorithm to maintain an optimal

path set for each user intent group. Once it receives the

user intent packet (0x13), it will read the IPv6 flow part

(following the same eBPF logic as the viewer side edge node)

and perform the path change if the current path does not

have adequate resources to guarantee the quality of Full High

Definition (FHD) resolution level. Then it will decapsulate the

SRv6 header and forward the original application message to

the application platform.

C. Online path probing and selection algorithm

Fig. 4: path probing for user intent types

Subsequently, we delve into the path probing and selection

mechanisms, deployed at both the source side and viewer side

edge nodes, to periodically probe path conditions and maintain

a re-direction path set by a MAB algorithm. We first examine

the path probing mechanism, where the source edge node

sends tailored TCP packets to the viewer node, recording their

delay and transport layer data as input for routing selection

(see Fig.4). Due to rare user intent expressions, gathering

path performance data for each intent group from infrequent

online user samples is impractical. Moreover, with the inherent

congestion and variability in today’s cloud/edge paths [8], [9],

[17], timely capturing path information is crucial for real-time

routing decisions. Towards this end, we developed a path prob-

ing mechanism enabling the source edge node to collect real-

time path data by periodically sending customized packets to



the viewer node, tailored to match the flow patterns of various

user intent groups through adjustments in packet size, number,

and interval. For example, at the lowest resolution, NFOV

has 75K points/frame [1]; for the streaming requirement of

30 FPS, frames are sent consecutively with a 33 ms interval.

To reduce the traffic volume of path probing, we keep the

same request interval but each probing frame is only 1/30 of a

single volumetric video frame (e.g., 13KB per probing frame).

Conversely, for higher resolutions like Full HD at 8.46 million

points/frame and 15 FPS, the source node sends two frames

66 ms apart, each about 42 KB. Different probing patterns are

employed because low-resolution packets may not detect link

variations due to their size or FPS, while larger high-resolution

packets are more susceptible to or can be affected by network

congestion [1]. In detail, the edge node at the source side

will periodically send probing packets to the viewer side edge

node, printing and saving real-time transport-layer congestion

control information (e.g., re-ordered packet number from the

kernel), and the application layer frame delay as sensed path

information.

Algorithm 1: UCB routing algorithm with moving

average window tracking

Data: path set I , Intent network group J
Result: Selected path for each user intent P (t)
Initialize: Nij(t): the number of path i has been selected up

for user intent group j at round t
Rij(t): the sum of rewards of path i for intent j at round t
Sij(t): Normalized sample value that contains probing result

on each path i
σ(Sij(t)): Standard deviation of Sij(t)
Pj(t): Path index in path set I should be deployed for user

intent group j
W : size of moving window
α and β: hyperparameters to adjust UCB value
for t = 1, 2, . . . do

for intent type j in J do
for path i in I do

Calculate the average reward:

rij(t) =
Rij(t)

Nij(t)
− α · σ(Sij(t)) of path i in

window [t−W, t)
Calculate the confidence interval
[rij(t)−∆ij(t), rij(t) + ∆ij(t)] in window

[t−W, t) by obtaining ∆ij(t) =
√

2 lnT

Nj(t)

Update the optimal path i for intent j that has
the maximum UCB:

Pij(t) =
argmaxi (max (rij(t), 0) + β ·∆ij(t))

Send probing frame of intent group j on path
Pij(t), observe Sij(t)

Update Rij(t), increase Nij(t) by 1

Algorithm 1 shows the proposed moving average Upper

Confidence Bound (UCB) routing selection algorithm that

will be executed at the source side edge node to decide an

optimal path. Traditionally, the UCB algorithm can balance

exploitation and exploration, and here we adopt it to decide

whether to stick on the current path or switch to another path.

It chooses the path with the highest upper confidence bound,

using the average reward r̄ij(t) + ∆i(t) for exploration and

the selection frequency ∆i(t) for exploitation at round t [24].

However, in the context of modern network scenarios, the

UCB algorithm faces the challenge of non-stationary network

variation [8], [9], [17]. This means that the characteristics

of the network such as the available bandwidth, latency, and

packet loss rate, may present temporal variation, making it

difficult to maintain an accurate estimate of the expected return

for each path. To overcome this challenge, we introduce a

moving window-based average value and standard deviation

in the reward part to capture potential perceived network and

application fluctuations.

Sij(t) = δ

(

1−
Retransij(t)

Retrans Max

)

+ γ

(

1−
Frame Delayij(t)

Frame Delay Max

)

(1)

Regarding each notation in the algorithm, the topology

information set is denoted as I , including candidate paths

for each user intent group. Utilizing global topology data

and user intent needs, the SDN controller selects tailored

paths for each group. Nij(t) is the number of paths i has

been selected for user intent group j. Rij(t) is the sum of

rewards of path i for intent group j, and Sij(t) is the raw

probing feedback that is normalized by a predefined function,

then the standard deviation of raw probing feedback σ(Sij(t))
will be obtained for each round. The raw probing feedback

contains the number of retransmission packets and frame delay

which is calculated as normalized and weighted linear sum

function as: The design of Sij(t) aims to integrate feedback

from both application and transport layers for each intent

group. It tracks retransmission counts from the transport layer,

indicating link variations that may activate congestion control

measures, potentially impacting user performance [1]. The

frame delay is an application layer metric more specifically

related to frame size, link capacity, and end-to-end delay. For

each intent group type, an empirical pre-defined maximum

value can be set according to the offline intent knowledge

model at the SDN controller, in order to clip them into the

range [0,1]. The coefficients δ and γ are 0.2 and γ to 0.8.

The algorithm initiates by sending probing frames along

each candidate path from the source node to set up the

path parameter matrices. When the source side node starts

this algorithm, there will be a probing frame group sent on

each candidate path to initialize each path’s parameter matrix.

To obtain the UCB value of each path, Rij(t), Sij(t) and

σ(Sij(t)) will be calculated within a moving window-based

manner (e.g., [t − W, t)) where W denotes the size of the

sliding window). For instance, Rij(t) =
∑t

k=t−W Sij(k) is

the cumulative reward in a given window size w for user

intent group j on path i. This moving average window can

help to gradually forget the path’s past historical performance;

therefore the algorithm can capture more temporal features of

a link and then make more informed decisions when selecting

the optimal path. The variance obtained is a subtractive value

to reduce the reward of the current path, indicating that con-

tinuous variation can lead to a reduction of the probability that



the path will be selected. The moving window is adjustable

depending on the network operator’s knowledge of its link

variation frequency. The number of an arm has been selected

during a given sliding window will be used to calculate the

∆ij(t) =
√

2 lnT
Nij(t)

which indicates that the less an arm has

been selected, the larger the value of ∆ij(t) will be to boost

the probability that this arm can be explored in the future.

Then during every probing round, the path with the highest

upper-bound confidence r̄ij(t) + ∆ij(t) will be selected as

the optimal path and stored in Pij(t), which denotes the path

index with maximum UCB value in the path set I that should

be deployed for user intent group j. Once the optimal path is

obtained, the edge function will send corresponding probing

frames on the selected path, also increase the selected path

number Nij(t) and update the observed reward. It is worth

noting that we only consider the application flow state change

triggered by user intent, leaving the resolution change caused

by varying network conditions as our future work.

Fig. 5: Implementation of the proposed framework

IV. EVALUATION RESULTS

A. Implementation of the proposed framework

1) We utilized the Ryu controller [24] with the OpenFlow

protocol and Restful API to manage the SDN, gathering

topology and path data in the transport network simulated in

Mininet [25]. The network includes two edge nodes: one for

real-time intent packet parsing via XDP eBPF with SRv6, and

another for SRv6 decapsulation and rerouting. These nodes

use a non-blocking TCP socket model with a window size of

30 and tuning constants α and β set to 2 and 0.4, respectively

(see Fig.5).

2) Intent expression interface at HoloLens 2: We have

implemented a practical system on HoloLens2 to stream

the captured real-time 6-DoF content to be transmitted and

rendered on the HoloLens 2 side. Additionally, a dedicated

intent tracing module is deployed within HoloLens 2 (e.g.,

position to the target object), and it can export user intent to

a locally connected Ubuntu machine. Then the local Ubuntu

machine can send a message with the SRv6 header and modify

the corresponding IPv6 flow label to indicate the remote edge

node on behalf of the HoloLens 2.

3) Live streaming source: We integrated a Microsoft Azure

Kinect DK camera with modified Livescan3D code. A novel

feature dynamically adjusts camera resolution and depth

based on control messages, optimizing for scenarios with

a single subject 1 meter away. We evaluated performance

based on throughput, frames per second (FPS), and frame

delay—defined as the latency from frame creation to receipt by

the edge node. Assuming minimal access path cost, we focused

on the transport network as the primary bottleneck. Edge-to-

user traffic optimization and 2D meta-context reconstruction

significantly reduce data load. We used ZSTD [27] compres-

sion, superior to other methods for live streaming delays [15].

B. Key application performance comparisons

Fig. 6: Key performance comparison

We generated 20 unique path sets, each with 5 disjoint paths

based on specified bandwidth (350, 150, 50 Mbps), delay (10,

20, 100 ms), and loss (0.0%, 0.10%, 0.15%) parameters. For

each topology, there is at least one path that can guarantee

a satisfactory performance for all resolution levels. Since the

bandwidth of 50Mbps is sufficient for the lowest resolution

level NFOV, therefore we allocate the path with the lowest

delay to the live volumetric flow. Each experiment lasts for

240 seconds and the resolution change request happens at the

60th second. We enabled and disabled our framework for each

experiment setting and recorded the key performance metrics

for the higher resolution level. Fig.6 depicts the performance

comparison when a user switches to an FHD resolution level

with and without our framework. As the FHD resolution

level requires a much higher point density (more than 10

times than NFOV), therefore without enabling our intent-aware

path adaptation framework, the default path with inadequate

bandwidth will degrade the perceived FPS and frame delay.

Furthermore, this poor FPS and around 250 ms frame delay

can not even allow the user to understand the motion displayed

in the live volumetric streaming scenario. In contrast, with the

help of the proposed framework, satisfactory performance can

be guaranteed. This is because at the beginning 60th seconds,

the MAB algorithm can successfully select and update a proper

path for FHD resolution level, even though the target path may

present various properties across different topology settings.

C. Impact of different resolution levels

Then we evaluate the resolution change to be more di-

verse to include HD, FHD, and Wide Quad High Defini-

tion (WQHD) levels, following the same topology sets of

above evaluation. A common observation is that improved



(a) Frame Delay Comparison

(b) FPS comparison

(c) Throughput Comparison

Fig. 7: Comparison between different resolution levels

performance can be observed across all resolution levels.

Both HD and FHD resolution levels can obtain full FPS

performance and around 100ms frame delay, although in some

cases they can not capture the full bandwidth provided by

the path. This is because HD resolution is more tolerant in

terms of path selection; even if there is packet loss due to

congestion on some high-bandwidth links, it does not affect

its ability to achieve satisfactory performance. Moreover, as

the bandwidth required for HD resolution in our experiments

is around 180 Mbps, its throughput does not consume all

available bandwidth. In comparison, FHD requires strict high

bandwidth to achieve satisfactory performance, which means

that any packet loss or additional latency on the path can

cause fluctuations in its performance. Additionally, we have

incorporated WQHD resolution, and although its performance

has significantly improved compared to before path switching

was enabled, it still falls far short of a satisfactory user

experience. In such cases, network operators should explicitly

refuse the registration of such resolutions during offline intent

registration, and application providers should also update

their terminal software accordingly to ensure that unregistered

resolutions are not emitted from user devices.

D. Performance under network variation (loss and delay)

As common network variation in the industrial level network

is still observed in delay and packet loss [8], [9], we emulate

such time-variant links and evaluate whether our algorithm

can timely capture such variation and maintain an optimal

path. Path set in this experiment is Path 1: 150Mbps, 20ms,

0.15%, Path 2: 350Mbps, 10ms, 0.05%, Path 3: 350Mbps,

10ms,0.00%, Path 4: 50Mbps, 20ms, 0.00%, Path 5: 50Mbps,

20ms, 0.05%. We manually introduce background traffic on

path 3 to add delay and loss at around the 600th sampling

index and double it at the 1100th index sampling index,

then asymmetrically reduce them at the 1600th and 2100th

sampling index, respectively. The probed reward of each path

is displayed in Fig.8a and Fig.8d. Then we show the probing

and routing selection results generated by our algorithm in

Fig.8b, Fig.8e, Fig.8c, Fig.8f. At the beginning, it will take

around 200 sampling rounds to identify and converge to

an outperforming path (e.g., path 3), especially during the

competition between Path 2 and Path 3. We attribute this initial

converge phase to several reasons. First, the UCB algorithm

has the expected total regret upper bound approximately as

O(
√
KT log T ) [24], where K is the path number and T is the

current round. There it will take a short while for each path to

be explored in the initial phase. Second, as the frame size of a

given resolution also varies between 412KB to 625KB, it will

take a few rounds for the algorithm to correctly recognize

and then distinguish the empirical average reward on these

two paths (as see Fig.8b and Fig.8c). However, once the

background traffic surges on path 3, its reward becomes highly

variant. After the observable reward drop, the algorithm adds

path 2 as the best path. This is because path 2 has a more

stable average reward and due to its less selected count, the

joint effect of the exploration and exploitation parts brings

this path to have the highest UCB value (see Fig.8b). It is

worth mentioning that once Path 3 gradually recovers from

the high load and longer delay, the algorithm will continuously

leverage its probing mechanism for a hundred probing samples

to ensure true path performance recovery before it can trigger

the path switch back to Path 3 (see in Fig.8c). In contrast,

in the beginning, once the path starts to drop, the probing

mechanism will instantly capture the variance to trigger path

switching (e.g., only one probing interval by examining the log

file), therefore minimising the probability that the new intent

arrives in this gap. Regarding the performance improvement

evaluated by triggering an intent to change resolution from

NFOV to HD, the frame delay and FPS can be retained

as satisfied levels once user intent for the HD resolution

level arrives. Next, we emulate random loss and its effect on

path selection and switching of HD resolution (see Fig.8d,

Fig.8e, and Fig.8f). Obviously, the probed reward of path 3

presents relatively lower variation under random loss. This

is because the transport layer congestion control algorithm



(a) Calculated UCB value of each path (under delay

variation) (b) The reward of each path (under delay variation) (c) Selected path index (under delay variation)

(d) Calculated UCB value of each path (under loss varia-

tion) (e) The reward of each path (under loss variation) (f) Selected path index (under loss variation)

Fig. 8: Detail information of path probing and route selection under loss and delay variation

BBR algorithm does not rely on packet loss as a congestion

signal, random packet loss However, we can still observe some

fluctuations in path 3, due to TCP BBR’s periodic congestion

control window drop to enter probe RTT state to sense a more

accurate congestion control window once network fluctuation

is detected [27]. These fluctuations can be correctly captured

because we consider packet retransmission in our sampling

(see Fig.8b), and consequently path switch can be triggered

correspondingly. From the application’s perspective, packet

retransmission and reordering have a negative impact on the

parsing and processing at the application layer. Therefore, our

policy still chooses to switch to path 2 when these occur and

switch back to path 3 after detecting that the packet loss has

disappeared and the path has stabilized.

E. Comparison between MAB algorithms

Fig. 9: Performance comparison between different MAB algorithms

Then we compare the proposed intent-based UCB moving

average and variance (UCB-MV) algorithm with other algo-

rithms including greedy, e-greedy, and EXP3 [29]. Intuitively,

the exploration part of the algorithm should timely capture an-

other stable path while network variation occurs. The e-greedy

implemented uses a fixed parameter of 0.2 to allow other paths

to be explored randomly, the pure-greedy algorithm always

follows the best reward arm with minimized exploration, and

similarly, EXP3 updates the probability for each candidate path

according to the observed reward and is natively capture the

non-stationary scenario. The first evaluation metric is the cu-

mulative reward of each algorithm under delay variation. (see

Fig.9). Apparently, the adopted UCB-MV algorithm achieves

the best cumulative reward in around 3000 sampling index

among all algorithms, although epsilon-greedy can achieve

close performance as UCB-MV. However, as these four curves

start to perform differently at around the 600th sampling

index that the delay variation happens, only the UCB-MV

algorithm can immediately identify this change, maintaining

the optimal growth rate among the four curves. The second

evaluation metric is the number of path switches applied to

the network which can cost unnecessary network configuration

resources. Similarly, the epsilon-greedy algorithm with proper

exploration parameters (e.g., 0.2) would allow each arm to be

randomly selected. However, in a practical networking routing

system, this can cause unnecessary network configuration

costs. In contrast, the UCB algorithm’s exploration is based on

reward information gathered from calculated reward and the

number of selected, it can ensure only the path with noticeable



reward will be explored.

F. Impact of congestion control algorithms

Fig. 10: Performance comparison between different congestion algorithms

Finally, we compare the impact of different congestion

control algorithms, such as CUBIC [30] and BBR. CUBIC

uses explicit packet loss as its congestion signal, unlike BBR

which estimates per-round delivery rates. Thus, applications

using CUBIC are more sensitive to network variations. Fig.10

illustrates that path-switching algorithms significantly benefit

CUBIC, showing a larger percentage improvement in resolu-

tion levels, although with more variability. This also brings

the task for network operators to be aware of the congestion

control algorithm used by application providers during the

offline intent registration phase, then to wisely set the related

parameters of their network adaptation policies.

V. CONCLUSION

In this work, we explore performing real-time network path

adjustments driven by user behaviours and network conditions,

for optimal performance based on user intents. Using offline

intent negotiation, the network sets fixed encoding for different

behaviours and requirements, while an online edge interface

can capture real-time behaviours. In a fluctuating network

environment, we introduce a moving averaged UCB algorithm

to detect and maintain an optimal path table for various

user intents. The evaluation results validated through software

implementations and measurements, demonstrates stable and

improved QoE performance, once the proposed framework is

enabled.
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