
Enabling eBPF-based packet duplication for robust

volumetric video streaming

Peng Qian∗, Ning Wang∗, Foh Chuan Heng∗, Jia Zhang†, Carl Udora∗, Rahim Tafazolli∗

∗5GIC&6GIC, Institute for Communication Systems (ICS), University of Surrey, Guildford, Surrey, U.K.
† Department of Computer Science and Technology, Tsinghua University, Zhongguancun Laboratory, Beijing, China

Email: {peng.qian, n.wang, c.foh, cu00029, r.tafazolli}@surrey.ac.uk, joycezhangjia@gmail.com

Abstract—Volumetric video streaming, an innovative
media application, facilitates the real-time and immersive
teleportation of individuals or objects into the virtual
environment of the audience. Unlike conventional video
streaming applications, volumetric content is particularly
vulnerable to network fluctuations, which can lead to
performance degradation such as reduced FPS, delayed
frame delivery. In this research, we introduce an eBPF-based
network function that duplicates packets along the pathways
between network nodes, ensuring timely packet delivery
amid network instability. Furthermore, we propose a path
elimination algorithm to discard paths incapable of delivering
frames within the target latency. Our implementation and
evaluation validate the rapid and robust performance achieved
across various resolution levels.

Index Terms—Volumetric video streaming, extended reality
(XR), eBPF

I. INTRODUCTION

Volumetric video streaming is a type of extended reality

(XR) media application that can enable real-time content

presentation in the form of 6 degrees of freedom, offering

users enhanced visual freedom and even diverse interaction

involving multiple sensory perceptions. Different from the

conventional media types, the rapid increment of capturable

points number beyond the million level [1] and the booming

evolution of the end user device bring unprecedented chal-

lenges for assuring satisfactory Quality of Experience (QoE)

to volumetric streaming users.

Fig. 1: Remote volumetric video streaming

Fig. 1 depicts a volumetric video streaming application,

with a volumetric camera capturing the image of a real-

time object and transferring it to a remote user through the

transport network. The required transmission and computa-

tion capabilities have been overwhelmed by the unaffordable

point scale, which can reach up to multiple GB/s levels [1].

Consequently, ensuring satisfactory user experience of vol-

umetric streaming flow when traversing a transport network

connecting two sites faces unprecedented challenges, due to

its sensitivity to latency and packet loss. Recent reports on

commercial transport network measurements covering intra-

continental and intercontinental scenarios reveal a noticeable

observation [2], [3], [4]. Despite the boosted bandwidth and

latency which can gradually support worldwide volumetric

streaming [27], network uncertainties like random packet

loss and variant latency persist, exhibiting either periodic

or stochastic behaviour, leading to increased difficulties in

obtaining fine-grained and accurate measurement results [2],

[3], [4]. More importantly, the impact of these network

fluctuations on volumetric video streaming is noteworthy.

Any packet loss or delay causing interrupted or significant

delays between frames can result in interrupted point cloud

rendering and then fragmented volumetric frame displays.

This can further lead to spatial architectural distortions and

irregular physical movements in the perceived teleported sce-

nario, disrupting the immersive experience and diminishing

the sense of presence and realism for the user.

In this work, towards a robust delivery performance of

volumetric video streaming under these inevitable network

uncertainties, we propose an intelligent extended Berkeley

Packet Filter (eBPF) [5] function pair that duplicates packets

across multiple paths in a transport network. There are three

key novel components in this solution: The first component

is packet duplication. This technique has been primarily

applied to small packets [6], [7], with its efficacy has been

approved in modern cloud/edge networks’ multiple avail-

able paths that can ensure low and robust delivery latency

without retransmission. This inspires us to implement it

to volumetric streaming which demands equally stringent

latency. Secondly, eBPF represents a potent kernel-based

packet processing technology, with proven superior speed

over conventional network packet forwarding techniques [8].

Given the majority of recent research efforts have been paid

to its kernel function extension and performance evaluation

[9], [10], [11], it is novel and valuable to utilise its diverse

in-kernel fast packet processing interfaces to design tailored

application improvement. As a multimedia frame with packet

duplication may temporarily lead to bandwidth redundancy,

the third component entails a successive path elimination

algorithm aimed at rapidly trimming unnecessary paths,

significantly reducing the total bandwidth cost.

Through the implemented functionalities and test cases

conducted on a practical volumetric streaming platform, we

demonstrate that this innovative eBPF network functionality

consistently achieves stable performance in terms of Frames



per Second (FPS) and frame delay, even amidst inevitable

fluctuations in the transport network.

This paper is organised as follows: In section II, we

provide a literature review of recent efforts on point cloud

streaming optimisation and the eBPF evolution. In section

III, we provide a detailed illustration of the automatic

eBPF packet duplication function deployed in a node pair.

Then, we explain the implementation and test platform, with

extensive evaluations followed by a solid discussion and

conclusion.

II. RELATED WORKS

A. Volumetric video streaming and optimisations

In recent years, significant research has been focused on

minimising the transmission volume costs associated with

volumetric frames. In [12], the author examined the com-

bined impact of computational cost and network communi-

cation cost, and introduced an innovative resource allocation

framework aimed at enhancing QoE by selecting tiles at

various resolution levels. The QoE problem is formulated as

a non-linear integer optimisation problem, and the evaluation

shows user QoE can be improved under different distances

to the volumetric object. In [13], the author introduced a

framework that generates a 2-Dimensional (2D) view from

volumetric video on a cloud server and streams this 2D

video to the client. Additionally, to improve the motion-

photon latency caused by delayed user head motion, an

auto regression model has been designed to predict user

behaviours in a 5-window sequence. In [14], the author

investigates the potential of machine learning solutions to

facilitate immersive experiences for next-generation video

services. A novel point cloud streaming method is proposed

with a Reinforcement Learning (RL) algorithm, extracting

key semantic features for delivery and rendering. Given

that these approaches mainly focus on reducing transmitted

traffic volume by offline generating the learnable video fea-

tures, our approach is orthogonal since it solves the problem

caused by network uncertainties in real-time streaming.

B. Transport Layer Multipath adaptation

Another conventional research direction to enhance con-

tent delivery robustness is multipath transport layer solutions

to split traffic into different paths by sensing real-time

path conditions and carefully deciding the splitting ratio

[15], [16]. Similarly as other approach focusing on apply

parallel connections on single path (e.g., rate synchronisation

[28] and protocol switch [29]), these approaches also face

challenges in managing sub-flow on different sockets, with

the eBPF solution can natively bounded to physical inter-

faces with a simple one-off triggering signal. Regarding the

redundant steering mode which also generates packet replica

on multiple sub-flows, it has been investigated to enhance

service reliability and latency, with Load balancing mode

[18] or prioritisation replication with Spearman’s correlation

coefficient [19]. These strategies show potential gains in

various aspects, like latency and throughput. Additionally,

the emerging UDP-based transport layer Quick UDP Internet

Connections (QUIC) is being armed with these multipath

abilities [17], [18], with pluggable components of conven-

tional network coding techniques [19]. However, conven-

tional multipath-based solutions have several disadvantages.

On the one hand, the transport layer-based Multi-Path TCP

(MPTCP) solution requires multiple sockets and connections

to be established and maintained, then packets on different

connections need to traverse the network stack from kernel

space to user space with an additional copy. On the other

hand, once a packet is affected by a delay spike, not only

unnecessary retransmission and congestion control will be

conducted on each path individually, but also the rendering

of the frame will be blocked until the data arrives with the

risk of out-of-order delivery on multiple paths. Therefore

these shortages of the aforementioned work inspire us to

apply eBPF-based packet duplication on volumetric stream-

ing flow, which only involves layer 2/3 processing without

redundant functionalities.

III. EBPF BASED PACKET DUPLICATION

FRAMEWORK

Fig. 2: The proposed eBPF packet duplication function pair

In this section, we provide an overview of the proposed

network function, which is deployed across ingress and

egress node pairs in transport networks. This is followed by

a detailed component breakdown and a path elimination al-

gorithm designed to reduce unnecessary paths and minimise

bandwidth costs

A. System Overview

As shown in Fig. 2 the proposed eBPF-based packet

duplication relies on two separate network nodes as a sender-

receiver pair, coordinating with a centralised Software De-

fined Networking (SDN) controller to exchange signalling

for packet duplication. These network functions nodes are

running as daemons, responsible for duplicating packets for

volumetric applications along the paths between them in the

transport network. Meanwhile, the SDN controller monitors

and manages the video streaming flow and instructs nodes

to start, stop, or adjust the duplication policy, once it detects

the performance of a given volumetric flow is degrading.

These operations are automated, with each step detailed as

follows:

Step 1, 2: Monitoring the performance of the deployed

volumetric application in the transport network and

triggering packet duplication

The centralised SDN controller has a global visibility

into real-time topology and flow [2], allowing it to detect

performance changes in volumetric streaming. Using meth-

ods for real-time video QoE estimation [20], the controller



Fig. 3: The design of the proposed eBPF based packet duplication function pair

adopts a simple policy to monitor the video to identify

performance drops. Lacking direct access to transport and

application layer data, the SDN controller will mainly focus

on the uplink frame request packet, including timestamps

and packet sizes, to sufficiently infer consecutive application

layer round-time-trip time and therefore real-time video QoE

[20]. In practice, our policy triggers the eBPF function if the

interval between requests exceeds a pre-defined threshold,

for example, 150ms, for three consecutive instances. Upon

detection of such performance degradation, the SDN con-

troller will send an IPv4 packet as a signalling message, to

the sender side node to initiate packet duplication function.

In the IPv4 packet, there is a special indication bit set in the

Type-of-Service (ToS) filed in the IPv4 packet, indicating to

start of the duplication function.

Step 3: Sending duplicated packet

The sender-side eBPF function will first filter the incom-

ing packets. Once it matches the target volumetric applica-

tion’s destination address (e.g. user device), the packet will

be cloned and sent on multiple disjoint paths simultaneously.

Accordingly, for the arrived packets with the same packet

ID, the receiver node deployed closer to the user device

side will only keep the packet that arrive first and drop

other replicas, to ensure for each packet ID only one copy

will be loaded by the upper layer. The benefit of packet

duplication is that despite network fluctuation may change

any path to have unpredictable link degradation, the packet

can be delivered by the best network resources among

them without a complex real-time path quality estimation.

Consequently, with the guaranteed delivery performance,

both the application server and the user won’t perceive any

negative effect caused by unpredictable random loss or delay

spike.

Step 4,5: Eliminate unnecessary path and update to

sender function through SDN controller

To prevent unnecessary frames sent along paths where

delivered packet replicas are consistently dropped due to per-

formance constraints, the receiver node will execute a path

elimination algorithm to remove such paths. The algorithm

is performed per packet ID in a sliding window manner;

the input information will be a timestamp of each packet

replica, and the output is the path index to be eliminated.

Then the decision will be sent to SDN control via Restful

API through the signalling path, and SDN will immediately

update its local record and forward this updated path set to

the sender side function to instruct it to trim the unused path

from its packet duplication path set.

Step 6: Stop packet duplication function and restart At

the receiver node, once there is only one path in the path set,

the algorithm will stop. At the same time, the duplication

function is implicitly stopped once the sender side has

no more path to be duplicated. If the network instability

diminish and multiple paths resume exhibiting comparable

performance, the algorithm will automatically detect this and

restrict packet forwarding to a single path, thereby ensuring

reliable delivery. The condition that can trigger the restart

of the packet duplication function is the SDN controller

identifies a performance drop of the application again, then

it will issue a signalling message to the sender side function

to enable all path duplication.

B. eBPF function design in edge node pair

We elaborate on the detailed eBPF program design for

both sender and receiver edge nodes (refer to Fig. 3). For

the sender part, we develop an eBPF-TC based program

in the kernel space to monitor all outgoing packets to the

remote content server. By extracting the IP destination from

the _sk_buff part, the matched packets are internally

directed to the duplication program function. The TC kernel

program adopts an eBPF hash array map to save the current

duplication policy with a value length of 8 bits and a

unique key index (e.g. 32-bit destination IP address). The

eBPF hash array map is a special data structure designed

to support efficient storage and retrieval of key-value data

between user and kernel spaces, commonly used for tasks

like network analysis and performance monitoring. Unlike

the usual hash map data struct in the programming language,



the eBPF hash array map can operate within the kernel,

enabling shared data access between kernel modules and user

programs with ignorable processing delay. Each bit in the 8-

bit length represents one of the paths that can be selected.

In detail, a default value 0x00 means packet duplication is

disabled. Code bits 0x01 to 0xfe are reserved for each path

combination. For instance, 0x03 indicates path index two

and path index one will be added in the path set, and 0x07

indicates path one, two, three will be enabled. Code 0xff

is another indication code to disable the path duplication

function, and once the sender side node receives this, it will

set current path duplication strategy to be 0x00.

Once the incoming volumetric packets are loaded into the

duplication function, the current packet duplication policy

will be extracted from the hash map, and the packet will

be duplicated to the corresponding network interfaces with

bpf_clone_redirection() function. To enable the

recipient to identify the packet and its route, the function

overwrites the ToS value in the IP header with a predefined

value indicating each path index. It also updates the des-

tination Media Access Control (MAC) address to the next

adjacent interface on the selected path according to the local

Address Resolution Protocol (ARP) table. Communication

from the sender node to the SDN controller relies on

standard IPv4 packets with customised ToS values to manage

the duplication policy.

When the duplicated packets are sent, at the receiver

side a combination of XDP kernel space and user space

program will be enabled to receive and process the packet

replicas (see the right block in Fig. 3). In the kernel space

program, the packet ID at the IP layer will be extracted

from the sk_buff structure, and the first packet replica

that arrives will be inserted into an eBPF hash array map.

The following arrival of the same packet will be dropped

by finding out the existence of the same packet ID in the

hash map. Additionally, as the packet ID in IPv4 header

only has a 16bit length, two packets containing different

content but having the same ID may arrive at different stages

of a video stream, due to looping index (e.g. 0x0001 to

0xFFFF then circles back to 0x0001 again). Then we set a

adjustable time threshold (e.g. 1 second), that if the incoming

packet ID is already in the map and the time difference

between the stored packet and current packet is less than

this threshold, we regard them as belonging to the same

packet, and drop the later. Otherwise, the deprecated packet

will be removed from the HashMap with the update of the

latest packet arrival timestamp. For saving and reporting each

packet’s arrival time, ID, and other header values to user

space for analysis purposes, the XDP kernel program will

utilise an eBPF perf output map to store such values. The

key in this map is the packet ID, but the value is designed

to be a customised structure that can store arrival time, and

other useful information from the header (e.g. header length,

payload length). Different from the eBPF hash array map,

the eBPF perf output map is specially designed to transmit

data from the kernel to user space, commonly employed

for real-time performance monitoring and tracing purposes

without incurring any noticeable delay for the large-scale

data processing procedure. At the user space program, it will

load the compiled kernel program object and find the cor-

responding perf output map. The perf_buffer__poll

function will be called to periodically print the real-time

information to a local file, which will be used as input for the

path elimination algorithm. For the communication interface

to the SDN controller, different from the sender side, the

communication relies on a separated user space program to

read the output of packet statistics, calculate the plugged

path elimination, and trigger a Restful message to the SDN

controller.

C. successive path elimination algorithm

Algorithm 1: Sliding Window Based Successive

Path Elimination Algorithm

Input: W : sliding window size, n: packet ID, α: tolerated packet
arrival time gap

Input: Pi ∈ P : each path in pathset P , i: path index
Input: Ni(n): the count of packet arrives first on this path for

packets [n, n−W + 1]
Input: Ri(n): the reward of path i for delivering packet n
Input: Ti(n): the packet arrival time through path i for packet n
Output: trimmed pathset P

1 for n in all incoming packets’ ID do

2 Observe all packet replicas have arrived, extract Ti(n) from
eBPF map and Tmin(n) denotes the earliest timestamp;

3 for i in 1 . . . I do

4 if Ti(n)− Tmin(n) < α then

5 Ri(n) = 1;
6 Ni(n)+ = 1;

7 if n > W then

8 Ni(n)− = Ri(n−W );
9 if Ni(n) == 0 then

10 Remove path i from P ;

11 if n > W then

12 for i in 1 . . . I do
13 if Ni(n) == W then

14 return {i};

15 Save trimmed pathset P ;

Considering the presence of lower-performing paths in

parallel routes, which are almost incapable of delivering

packets within the desired time, it is imperative to effi-

ciently identify and remove these paths from the set eligible

for packet duplication to prevent unnecessary bandwidth

wastage. To address this, we propose a sliding window-based

path elimination algorithm to remove under-performing

paths failing to meet predefined delivery criteria. The design

principle is that, instead of tracing detailed information

from the transport layer congestion control algorithm, the

path reward for delivering each packet is set to be a

simple 0-1 based value. In detail, for each packet ID n

the receiver node can save the first arrival timestamp as

Tmin(n), and if other packet replicas arrive within the range

of [Tmin(n), Tmin(n)+α], it will be awarded by one, the path

index i reward of the current packet Ri(n) is 0.

As described in Algorithm 1, at the beginning the cumu-

lative reward sum in a sliding window Ni(n) and an instant

reward at Ri(n) will be initialised as 0, while Ti(n) stores

the packet arrival time of ID t on path i. For every packet

received, once the XDP user side code identifies it receives



all packet replicas from all the paths in the current path set,

it will first set the packet that arrived first as Tmin(n), and

calculate each replica’s arrival time to determine whether it

is delivered within a threshold. A packet that arrives within

this threshold can be regarded as valuable for the current

volumetric flow, and its current reward Ri(n) can be set as

one and then increase Ni(n) accordingly.

After updating each packet arrival information of all paths,

the path with zero cumulative rewards will be removed if the

number of packets that have arrived so far is larger than a

predefined window size. Additionally, if any of the paths can

have all packets delivered within the acceptable threshold,

it will be immediately regarded as the path that can work

solely to guarantee the performance, then the algorithm will

stop and this path index i will be returned. The window

size can be set according to the packet number per frame

according to a frame size of different resolution levels.

IV. IMPLEMENTATION AND EVALUATION RESULTS

A. Implementation and evaluation tested

Fig. 4: The implemented test framework

In the implemented test platform (see Fig. 4), the Ryu

controller [22] is adopted as the SDN controller, which

enables the OpenFlow protocol and Restful API to al-

low communication between the SDN controller and eBPF

nodes. The exchanged IPv4 signaling messages is to activate

and modify the packet duplication function. Underlying

nodes are created in a Mininet [23] environment, with

two nodes designated as edge functions. We deploy a real

HoloLens 2 helm for the viewer and a Microsoft Azure

Kinect DK camera with an enhanced Livescan3d server [24]

as the content source connected to the Mininet testbed. The

captured content is a single adult standing 1 meter in front of

the camera in a live live-streaming manner. The compression

technique adopted is ZSTD [25] since can support low

encoding and decoding latency for both on-demand and live

streaming, while other approaches require unaffordable time

to perform [30]. Regarding the transport network topology,

we have drawn inspiration from recent reports in the industry

[2], [3], [4] and designed a set of experimental paths to

evaluate our framework and algorithms. The design criteria

of disjoint paths in the transport network are based on

the transmission performance of individual packets (e.g.,

1500 Bytes) on these paths, categorised into three types:

1) Each packet is delivered within the required time with no

fluctuations 2) Some packets are delivered on time, while

others experience significant delays; 3) Almost all packets

fail to be delivered within the required time (see in Table

1).Each experiment lasts for 60s and the background traffic

starts to cause network variation from 10s to 50s. For the

measured results we only show the record from 10s to 50s.

By default, the flow is on path 1. Especially, in this emulated

transport network, we exclude the case that no path set can

support the required bandwidth/delay since this is a problem

requiring network capacity expansion and should not be

solved by network adaptation techniques. The tolerated delay

is set to 5ms and the sliding window is set to 100. The TCP

congestion control adopted is BBR [26].

TABLE I: Caption for the table image

B. Performance comparison between enabling and disabling

packet duplication function

First, we compare the performance improvement over

three different resolution levels, which are Narrow Field

of View (NFOV), High Definition (HD), and Full High

Definition (FHD) (see Fig. 5a, Fig. 5b, Fig. 5c). Obviously,

our algorithm can retain almost full FPS performance over

all resolution levels, with ignorable variation observed. In

contrast, when the flow is confined to a single path but

experiences fluctuations, higher-resolution settings become

increasingly susceptible to variations in network links. For

instance, the FHD resolution level may see a drastic drop

in FPS to as low as 3, significantly deteriorating the user

experience. The reason behind this huge performance im-

provement is that the mainstream transport-layer congestion

control algorithms rely on per-round estimated delivery rate

and congestion to decide the sending rate for the next round.

However, RTT variation will affect their inner maintained

variables like round-trip propagation time and its standard

deviation calculation which then constrain the sending rate

at a very low level. Furthermore, the rendering of each frame

will be interrupted by the packet retransmission and delay,

therefore significantly hurting the user-perceived frames. In

contrast, duplicating packets on multiple paths can mitigate

such variation by utilising the best path in the transport

network at every round. Therefore, the in-time data packet

and the corresponding acknowledgement packet can retain

the rate estimation to a satisfactory level. Apart from FPS,

we continue to compare the frame delay, which is defined

as the timestamp that the content source generates a frame

so the frame can be fully received and rendered at the client

side. Different from FPS which the user device can use a

buffer [25] to temporarily absorb the packet insufficiency,

any network variation will be directly embodied in the

frame delay performance once no network therapy can be

applied. Fig. 5b shows the comparison between enabling

and disabling packet duplication across different resolution

levels. Apparently, the frame delay can be retained at a

low level with the help of packet duplication, while the

observed variation can be attributed to its varied size, which



(a) Calculated UCB value of each path (under delay

variation) (b) The reward of each path (under delay variation) (c) Selected path index (under delay variation)

Fig. 5: Performance comparison between enable/disable eBPF duplication

(a) Packet arrival time comparison (b) Cumulative reward comparison (c) Normalised bandwidth cost comparison

Fig. 6: Extended analysis of Packet Duplication function

may require different computation and transmission times.

Regarding the throughput comparison (see Fig. 5c), around

7 times improvement can be observed at the FHD level due

to its high point density, while the difference in NFOV level

is less significant.

C. Extended analysis of packet duplication function

A more detailed packet arrival time comparison between

enabling and disabling packet duplication of NFOV reso-

lution level can be found in Fig. 6a. Without duplication,

random and excessive delays for each packet significantly

degrade user experience, impacting frame delay and FPS.

However, once link variation is mitigated, packet delivery

latency remains low and stable. This leads to robust delivery

rate growth without perceived link variation. In Fig. 6b, we

depict the cumulative reward of five deployed paths, with

a sliding window of 100 packets and a tolerated delay of

5 ms. According to our algorithm, a packet arriving within

the tolerated delay receives a reward of one. Path 4, lacking

resources for packet delivery, is removed from the path

set after 200 windows. Paths 3 and 5, despite contributing

initially, perform poorly due to high variation and are subse-

quently eliminated. Although path 2 is identified as the best,

its cumulative reward is still less than 80 within a window,

necessitating the retention of default path 1 to ensure robust

performance. We calculate the normalised bandwidth cost

of packet duplication by summing all transmitted packets.

Higher resolutions necessitate more paths to ensure stability

due to their larger size and sensitivity to link variation.

Enabling packet duplication results in 1.8 times the band-

width cost for NFOV and 2.4 times for FHD compared to

no duplication, as higher resolutions are more susceptible

to variation. Paths consistently delivering packets outside

the acceptable range are promptly eliminated for lower

resolutions, whereas higher resolutions require more rounds

to leverage multiple paths, reverting to a single path once

variation subsides. The sliding window size and tolerated

delay range can be tailored based on historical variation

records in the transport network for different resolution

levels.

D. Comparison with path redirection function

Then this temporary bandwidth cost inspires us to com-

pare the packet duplication function with the path redirection

function, which can select only one path with the least RTT

once network variation happens (see Fig. 7). The Y axis

shows the throughput improvement compared to no packet

duplication applied. Generally, packet redirection achieves

less improvement than packet duplication, although it can

reduce the traffic volume to approximately the same as the

original quantity. However, the performance that a single

path can achieve significantly depends on the real-time

condition of a network which is highly uncontrollable. In

an industrial network, all paths will perform variance and

unpredictable conditions [2], [3], [4], and even it will

take several seconds to find an optimal path in a large

topology case [2]. Therefore, the additional bandwidth cost

by path duplication is not only to improve the throughput

but also can provide a guaranteed performance under such

unpredictable network fluctuations, especially for higher res-

olution levels which are observed to have larger throughput

improvement. The effectiveness of packet duplication versus



Fig. 7: Comparison with path redirection

redirection hinges on path properties. In practical networks,

paths fall into two categories: those meeting video resolution

requirements independently and those needing multiple paths

to work together for performance. In the former, our algo-

rithm efficiently trims redundant paths, minimising overhead.

However, redirecting flow to a single path in the latter case

may not ensure satisfactory performance.

V. CONCLUSION

The emerging volumetric streaming application is sensi-

tive to network fluctuations due to its large frame size and

high FPS requirements. To ensure consistent user QoE, we

propose an eBPF-based packet duplication function. This

function uses kernel TC/XDP packet cloning and forwarding

to send volumetric packets on separate paths, achieving

up to 7x throughput improvements. Additionally, a path

elimination algorithm reduces unnecessary paths based on

early real-time duplicate packets, saving bandwidth costs.

Evaluations have verified its performance across various

scenarios.

VI. ACKNOWLEDGMENT

This project is sponsored by the EU Horizon

Europe SPIRIT project (Grant Agreement 101070672,

https://www.spirit-project.eu/). The authors would also like

to acknowledge the support of 5GIC industry members

(5GIC) (http://www.surrey.ac.uk/5gic) for this work.

REFERENCES

[1] Qian, Peng, et al. ”Remote Production for Live Volumetric Teleporta-
tion Applications in 5G Networks.” IEEE transactions on broadcasting
68.2 (2022): 451-463.

[2] Li, Jinyang, et al. ”LiveNet: a low-latency video transport network
for large-scale live streaming.” Proceedings of the ACM SIGCOMM
2022 Conference. 2022.

[3] Birge-Lee, Henry, Maria Apostolaki, and Jennifer Rexford. ”It takes
two to tango: cooperative edge-to-edge routing.” Proceedings of the
21st ACM Workshop on Hot Topics in Networks. 2022.

[4] Jadin, Mathieu, et al. ”Leveraging eBPF to Make TCP Path-Aware.”
IEEE Transactions on Network and Service Management (2022).

[5] eBPF, [Online]: https://ebpf.io

[6] Aubry, François, et al. ”Traffic duplication through segmentable
disjoint paths.” 2015 IFIP Networking Conference (IFIP Networking).
IEEE, 2015.

[7] Jadin, Mathieu, et al. ”Leveraging eBPF to Make TCP Path-Aware.”
IEEE Transactions on Network and Service Management (2022).

[8] Parola, Federico, et al. ”Comparing User Space and In-Kernel Packet
Processing for Edge Data Centers.” ACM SIGCOMM Computer
Communication Review 53.1 (2023): 14-29.

[9] Vieira, Marcos AM, et al. ”Fast packet processing with ebpf and
xdp: Concepts, code, challenges, and applications.” ACM Computing
Surveys (CSUR) 53.1 (2020): 1-36.

[10] Shahinfar, Farbod, et al. ”Automatic Kernel Offload Using BPF.”
Proceedings of the 19th Workshop on Hot Topics in Operating
Systems. 2023.

[11] Enberg, Pekka, Ashwin Rao, and Sasu Tarkoma. ”Partition-aware
packet steering using XDP and eBPF for improving application-level
parallelism.” Proceedings of the 1st ACM CoNEXT Workshop on
Emerging in-Network Computing Paradigms. 2019

[12] Li J, Zhang C, Liu Z, et al. Joint communication and computational re-
source allocation for QoE-driven point cloud video streaming[C]//ICC
2020-2020 IEEE International Conference on Communications (ICC).
IEEE, 2020: 1-6.

[13] Zhang, Anlan, et al. ”YuZu:Neural-Enhanced Volumetric Video
Streaming.” 19th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 22). 2022.

[14] Huang, Yakun, et al. ”Towards Holographic Video Communications:
A Promising AI-driven Solution.” IEEE Communications Magazine
(2022).

[15] B. Felix, I. Steuck, A. Santos, S. Secci, and M. Nogueira, “Redundant
packet scheduling by uncorrelated paths in heterogeneous wireless
networks,” in 2018 IEEE Symposium on Computers and Communi-
cations (ISCC), 2018, pp. 00 498–00 503.

[16] E. Dong, M. Xu, X. Fu, and Y. Cao, “A loss aware MPTCP scheduler
for highly lossy networks,” Computer Networks, 2019

[17] Zheng, Zhilong, et al. ”Xlink: Qoe-driven multi-path quic transport in
large-scale video services.” Proceedings of the 2021 ACM SIGCOMM
2021 Conference. 2021.

[18] De Coninck, Quentin, and Olivier Bonaventure. ”Multipath quic: De-
sign and evaluation.” Proceedings of the 13th international conference
on emerging networking experiments and technologies. 2017.

[19] Michel, François, Quentin De Coninck, and Olivier Bonaventure.
”QUIC-FEC: Bringing the benefits of Forward Erasure Correction to
QUIC.” 2019 IFIP Networking Conference (IFIP Networking). IEEE,
2019.

[20] Shen, Meng, et al. ”DeepQoE: Real-time measurement of video qoe
from encrypted traffic with deep learning.” 2020 IEEE/ACM 28th
International Symposium on Quality of Service (IWQoS). IEEE, 2020.

[21] Ryu SDN controller [Online]: https://ryu-sdn.org/
[22] Mininet: An Instant Virtual Network on Your Laptop (or Other PC)

– [Online]: Mininet http://mininet.org
[23] GitHub - MarekKowalski/LiveScan3D: LiveScan3D is a system de-

signed for real time 3D reconstruction using multiple Azure Kinect
or Kinect v2 depth sensors simultaneously at real time speed.

[24] Collet, Yann, and Murray Kucherawy. Zstandard Compression and the
application/zstd Media Type. No. rfc8478. 2018.

[25] Selinis, Ioannis, et al. ”On the Internet-scale streaming of volumetric-
type content with assured user quality of experiences.” 2020 IFIP
networking conference (networking). IEEE, 2020.

[26] Cardwell, Neal, et al. ”BBR: Congestion-based congestion control.”
Communications of the ACM 60.2 (2017): 58-66.

[27] Selinis, Ioannis, et al. ”On the Internet-scale streaming of volumetric-
type content with assured user quality of experiences.” 2020 IFIP
networking conference (networking). IEEE, 2020.

[28] Zhang, Jia, et al. ”Reducing Mobile Web Latency Through Adaptively
Selecting Transport Protocol.” IEEE/ACM Transactions on Network-
ing (2023).

[29] Qian, Peng, Ning Wang, and Rahim Tafazolli. ”Achieving robust mo-
bile web content delivery performance based on multiple coordinated
QUIC connections.” IEEE Access 6 (2018): 11313-11328.

[30] Yang, Mengyu, et al. ”A Comparative Measurement Study of Point
Cloud-Based Volumetric Video Codecs.” IEEE Transactions on Broad-
casting (2023).


