

User-Intent Aware Transport-Layer Intelligence for

Frame Synchronisation in Multi-Party XR Application

Abstract— Emerging immersive media applications demand

tailored performance to accommodate diverse user intents,

particularly in scenarios with multiple users with different intents

and requiring frame synchronisation. This paper introduces a

novel transport-layer intelligence scheme that leverages a user

intent-aware API. This API enables the application layer to

communicate specific user intents and requirements to the

transport layer, optimizing immersive application performance.

Using deep reinforcement learning, our solution automatically

selects the optimal transport protocol and configuration for each

user intent across various immersive scenarios. Our evaluation

focuses on a live immersive video streaming application, with

different users transmitting volumetric content under different

network conditions. Results demonstrate that our scheme

accurately identifies suitable transport protocols and tailored

configurations for a wide range of user intents, ensuring multi-

user frame Synchronisation.
Index Terms— volumetric streaming, Transport-layer

intelligence, Intent-based networking

I. INTRODUCTION

In recent years, with the rise of interactive virtual reality

devices and the emergence of various multi-party applications,

how to effectively transmit live volumetric content over

networks has become a hot topic in both the industry and

academia [1-3]. However, only minor attention has been paid

to transport layer protocols, which are responsible for probing

network conditions and directly determining the transmission

rate of the volumetric frame. The legacy transport layer

protocols (e.g., SCTP, TCP, and QUIC [4-5]) and their

congestion control algorithms (BBR, CUBIC [6-7]) lack the

flexibility and programmability to meet the diverse needs of

modern media applications, particularly those with varying user

intents in live volumetric streaming scenarios. For instance,

considering an Internet-scale live virtual performance, the

members of a band can be located in different countries or

cities, and perform corresponding musical instruments by

receiving the volumetric images of other members. At the same

time, after the volumetric content of all band members is

transmitted to the audience in different regions, the audience

can also transmit their interactive behaviours to the band in the

form of volumetric content for real-time interaction. However,

due to variations in personnel numbers, behavioural patterns,

and the current stage's focus, the volume of transmitted content

may significantly differ [1, 8]. In addition, the transmission of

such multi-party content in different regions needs to undergo

various network conditions. Therefore, the transport layer

protocol is required to dynamically perceive the unpredictable

user intent changes in the application layer and make real-time

rate adjustments based on the changes in both the application

layer and the network conditions. In other words, flexibility and

extensibility are crucial, especially for multi-user

Synchronisation, precluding a one-size-fits-all approach.

In this paper, we propose a transport-layer architecture that

incorporates user intent awareness for immersive volumetric

environments. This architecture exposes an intent interface at

the application layer to communicate and indicate the user’s

specific requirements to the transport layer. User intent input

can be translated into instant application performance

requirements, and then the transport layer protocol will

automatically conduct self-adaptive configuration to guarantee

such requirements (e.g., multi-party frame Synchronisation).

By doing so, we aim to enhance the flexibility and

programmability of the transport layer, with minimal

modifications to legacy applications while ensuring zero risk to

the kernel. This architecture also eliminates the need for manual

tuning of transport-layer parameters or expert knowledge of

different transport stacks, enabling scalable and adaptive

Synchronisation tailored to user intents. We employ deep

neural networks enhanced by reinforcement learning for robust

function approximation, capturing intricate representations of

application use case intents and requirements. By leveraging

and extending the actor-critic reinforcement learning

framework [9], our approach enables the actor network to

govern transport-layer configuration decisions, while the critic

network assesses and provides feedback on the chosen

configurations, tailored to specific user intents within

immersive applications.

The main contribution of our work is listed as follows:

 We propose a holistic solution for user intent awareness at

the transport layer in live volumetric immersive

applications. Our approach includes an application-intent

expression Application Programming Interface (API) and

an intent policy manager to translate such user intent into

detailed performance metrics. This allows the transport

layer to adaptively support tailored application

requirements across diverse use cases.

 We implement a Deep Reinforcement Learning (DRL)--

based transport-layer scheme that identifies the most

suitable protocols and configurations to meet user intent-

specific performance requirements in live volumetric

applications. This ensures the transport layer's extensibility

and flexibility, enabling transparent utilization of existing

protocols with intent-optimized configurations.

 In our evaluation, we compare our intent-aware transport-

layer services against traditional approaches in a live

volumetric streaming application, emphasizing multi-user

 Vu San Ha Huynh†*, Peng Qian†*, Ning Wang*, Carl Udora*, Rahim Tafazolli*

 ∗5GIC & 6GIC, Institute for Communication Systems (ICS), University of Surrey, Guildford, Surrey, U.K.
 Email:{v.sanha, peng.qian, n.wang, cu00029, r.tafazolli}@surrey.ac.uk

Synchronisation. Our system significantly improves

performance in key metrics, predicting appropriate

protocols and configurations to achieve desired application

performance while balancing trade-offs.

The remainder of the paper is organized as follows: Section II

reviews related literature, Section III details the framework

architecture and DRL algorithm, Section IV analyses performance,

and Section V concludes the paper.

II. LITERATURE REVIEW

Intent-driven networks (IDN) [10] is a recent approach that

allows expressing service needs ("intents") through declarative

or imperative mechanisms, abstracting away the complexity of

their implementation. These intents, with the right level of

abstraction, can comprehensively describe services or

applications and their requirements, which are then

communicated to lower network layers. IDN starts with a

semantic language to represent intents, converting them to

primitives and mapping them to executable policies. These

policies are verified and deployed to the network to fulfil the

original service intents. However, a unified and clear definition

of IDN is still lacking, and its enabling techniques are under

further exploration.

In recent years, various intent-aware and protocol-

independent transport layers have been introduced, including

IETF TAPS [11], NEAT [12], Socket Intents [13], and

Congestion Control Plane (CCP) [14], aiming to enhance the

flexibility and extensibility of the transport layer. IETF TAPS

[11], a recent standard body effort, strives to replace the

conventional system-level socket API with a new transport-

layer socket API, enabling applications to articulate their needs

and preferences for optimal transport-layer service selection.

CCP [14], another recent advancement, modifies parameters

like congestion window and sending rate in user space to

customize the congestion control of underlying TCP

implementations. Hybrid Information-Centric Network (ICN)

Transport [15] leverages the ICN architecture, using prefixes in

content naming to communicate application intents, such as

real-time audio or video streams, and tags like "wireless,"

"cellular," "interactive," or "reliable" to indicate preferences.

These tags are not static but can be dynamically updated.

Researchers in [16] explored deep reinforcement learning to

adjust TCP's congestion window, ensuring applications achieve

their desired delays in dynamically changing networks.

Leveraging advancements in network programmability and

virtualization, numerous other cross-layer application intent

awareness efforts have been proposed, including DiffServ [17],

TMForum APIs [18], ETSI NFV Network Service Descriptor

[19], and ETSI Mobile Edge Application Descriptor [20]. These

efforts span data paths, user and kernel spaces, stream-byte and

message-based approaches, demonstrating the ongoing

innovation in intent-driven networking.

Although significant progress has been made in the next-

generation intent-aware transport layer, available requests or

API calls are still constrained by static APIs. CCP [14], AI-

based congestion control [16], and transport layer adaptation

[27] often rely on a specific transport protocol (e.g., TCP or

QUIC) or predefined application requirements (e.g.,

throughput, delay), limiting their generality and adaptability.

Research on IDN [10], emphasizing intent taxonomy and

lifecycle functions, and Hybrid-ICN Transport [15] are ongoing

but lack unified standards, implementations, verifications, and

transport orchestration support. This underscores the need for

further advancements in transport layer architecture to fulfil the

demands of future user intent-aware networks.

III. INTENT-AWARE TRANSPORT-LAYER SERVICES

In this section, we describe the design of our intent-aware

transport-layer architecture tailored for volumetric applications in

which end users may express different intents on the applications

in specific use case scenarios.

A. System Overview

We propose intent-aware transport-layer services that allow

the extensible and flexible use of any transport-layer protocols

with minimal modification at the application’s source code (see

Fig. 1). The connection handler is the key component to receive

the configuration policy translated from user intent. By

capturing the packets at the socket layer and redirecting them

from the traditional data path, this connection handler allows to

autonomously configure different connection properties (e.g.

congestion control algorithm, congestion window (cwnd),

initial window (IW), etc.) in response to different or changing

of user intents in human-oriented immersive applications.

Meanwhile, useful information from captured packets will be

stored as input statistical data for a DRL module to train and

generate an optimal configuration policy. These real-time

configuration policies tailored for different user intents will be

loaded by the transport layer policy manager and then instructed

to the underlying protocol stack accordingly through the

connection handler. Since the connection handler manages pre-

activated sockets of different transport layer protocols (e.g.,

TCP, QUIC, SCTP), it will first select one of the protocols, and

then configure its parameters. Moreover, the selected transport-

layer configuration towards which the data path redirection is

executed may either already exist in the Operating System (OS)

or not, therefore in order to maintain reliability, our intent-

aware transport-layer architecture integrates a systematic

fallback to the application’s original transport-layer protocol in

any failure situation (middleboxes interferences, etc.).

Consequently, this architecture is not limited to any particular

Figure 1. Intent-aware transport-layer services architecture for volumetric

streaming environments

Figure 2. Simplified Workflow of the intent framework

implementation of the main execution loop which could be

using eBPF [21] (for Linux kernel) or a customized datapath

library (e.g. libccp [14]).

Fig. 2 shows an overview of intent-aware transport-layer

services at the sender and receiver sides. Application

performance targets or requirements in a specific intent are

receiver-driven and can be flexibly expressed via our designed

transport-layer API both at the beginning or in the middle of the

data transmission session. The sender acquires frame request

packets from the receiver and updates its intent map to keep

track of applications with its corresponding user intent. Also,

it performs a transport-layer protocol selection, and

configuration optimization process with an aim to satisfy the

requests of receivers. Application at the receiver side is allowed

to express its requirement through our transport-layer API

which updates the intent map at run time. The intent map allows

us to map applications with their intent-dependent requirements

as well as with its most suitable transport-layer protocols to

satisfy these targets at a low computational cost. Packets

received from the network card will be redirected to eXpress

Data Path (XDP) [21] to perform high-speed packet processing

before mapping back to the corresponding application. These

packets received are also used for network profiling for future

analysis.

In terms of detailed function implementation, at both the

sender and receiver sides, the system interrupts the data path of

the application’s original transport-layer protocol (e.g. TCP)

and takes control of the packets for our intelligent processing

before the network stacks. The intent-aware transport-layer

services capture system calls and network events (e.g.

sendmsg(), recvmsg()) and then run our own safety-verified

data-path programs at both user and kernel space. Assuming a

host running the Linux operating system, the implementation

using eBPF [21] hookers attached to root cgroupv2 [21] will

enable every incoming and outcoming packet of all processes

on the host to be captured and processed. With the assistance of

a locally maintained intent/socket map, the socket and message

controller are able to identify the specific socket and process to

which the data packets should be forwarded. This map is

updated in the socket and message controller every time a

connection is established or closed.

B. Deep Reinforcement Learning-Based Intent-Aware

Transport-Layer Protocol Selection & Configuration

Based on the filtered packet information, we utilize a deep

reinforcement learning approach [9, 22, 25] in our integrated

transport policy manager to automatically identify the most

suitable set of transport-layer protocols and configurations to

satisfy the user intent. We manage to investigate whether

reinforcement learning “trial-and-error” approaches could be

used to enable transport-layer intelligence where our

considered scenarios have non-guaranteed global knowledge

and a certain degree of dynamics in application intent-

dependent requirements.

Input sample: The inputs into the transport policy manager

comprise network characteristics profiling from the receiving

packets (e.g., normalized round trip delay, packet loss). Based

on that, the transport policy manager builds a table of network

state and state transitions. The observed Quality-of-Service

(QoS) metrics are utilized to infer the objective application-

specific performance to which we compare the expected

performance in the reward function. As the intent-aware

transport policy manager maintains a historical record of state-

action-reward tuples ൏ 𝑠 ,𝑎 , 𝑟 , we describe our novel

design of state and action spaces, and the reward function of the

agent as follows:

State space: state 𝑠௧ of endpoint 𝑛 at time t is 𝑠௧ ൌ ሼ𝑢௧ሽ where 𝑢௧ ൌ ሼ𝑢,௧ , 𝑢,ଶ௧ , … , 𝑢,௧ ሽ as the QoS and application-specific

performance utility values observed. These QoS and

application-specific performance utility values are bounded

histories of statistics from received packet acknowledgement,

and also the application layer feedback if it can be retrieved

from the user intent interface. We propose to avoid metrics that

are expected to be highly variable across connections just

because of variations in link properties (e.g. deteriorated

wireless signals).

Action space: action 𝑎௧ of endpoint 𝑛 at time t is defined as: 𝑎௧ ൌ ሼ𝑝௧ , ∀𝑝 ∈ 𝑃ሽ, 𝑝௧ ൌ ሾ0,1ሿ indicating a list of transport-

layer candidates associated with different configurations (e.g.

Congestion Control (CC), cwnd, etc.). Our system model

encourages exploration and avoids repeatedly selecting a

particular set of transport parameters by assigning equal

probabilities to actions having relatively the same Q-values. We

manage to explore the action space where the transport policy

manager selects the most suitable transport-layer protocols (e.g.

TCP, UDP, QUIC, SCTP, etc.) and its transport-layer features

(e.g. congestion control algorithms, cwnd, IW) based on the

observed states to maximize the reward function. Our intent-

aware transport-layer policy manager treats continuous cwnd

configuration and discrete CC configuration separately. It is due

to the huge space of the continuous action (i.e., the value of

cwnd) that the DRL-agent can do at different times. Thus, in

order to improve the feasibility and efficiency, we let the DRL

agent find the best values of the action based on the parameters

calculated by the underlying transport protocol (e.g. TCP).

Thus, we propose a function that relates cwndୢ୰୪ value to the

value of cwnd that the DRL-agent receives periodically from

the state block:

cwndୢ୰୪ ൌ cఈ ൈ cwnd ሺ1)

where c is a constant factor and −1 ≤ α ≤ 1. Instead of searching

the entire space, this simplifies the exploration phase and

improves the learning convergence.

Reward space:

 𝑟௧ ൌ െሺ𝑟𝑒𝑞_𝑢𝑡𝑖𝑙𝑖𝑡𝑦௧ െ 𝑐𝑢𝑟𝑟_𝑢𝑡𝑖𝑙𝑖𝑡𝑦௧ሻ reflecting the gap

between the intent-dependent request and the current

experience. The reward model aims to reflect application-

specific performance, possibly under QoS and other constraints,

and the policy design that maximizes long-term rewards. As the

reward may depend on the requirements of different

applications, we aim to generalize the reward function. We

prefer objective application-specific performance evaluation

over subjective application-specific performance evaluation to

increase the level of automation without manual expression from

the application layer (e.g. Mean Opinion Score). QoS metrics

are prominently used in the automated application-specific

performance evaluation, thus we utilize WFL (Weber-Fechner

Law) [23] and IQX (Exponential Interdependency of QoE/QoS)

[23] to calculate reward utility function:

 qoe୧,୮୲ = γ
p
 × log(αp × qos୧୲ + β

p
) + θp (2)

for positive QoS metrics and

qoe୧,୬୲ = γ
n
 × eαn × ୯୭ୱ౪ + βn + θn (3)

for negative QoS metrics in which 𝛼, 𝛽, 𝛾 and 𝜃 are constant

parameters to fine-tune QoS/ application-specific performance

relationships. The reward utility function is:

 𝑟𝑒𝑞_𝑢𝑡𝑖𝑙𝑖𝑡𝑦௧ ൌ 𝛼𝑞𝑜𝑒,௧ െ 𝛽𝑞𝑜𝑒,௧ (4)

Note that some application-specific performance

requirements may conflict with each other (e.g. high Frame-Per-

Second (FPS), low playback latency), thus we utilize 𝛼, 𝛽 as the

weighting factor controlled by the specified requirement priority

from the application.

Moreover, we propose to utilize the soft actor-critic based RL

[22] approach which optimizes a stochastic policy in an off-

policy manner. The actor-network controls the transport-layer

configuration decisions/actions, and the critic network

evaluates and provides feedback on the chosen decisions to

update the transport-layer policy. Soft actor-critic [22,25]

allows our intent-aware transport-layer services to explore the

continuous action space of cwnd while being more sample

efficient and more robust to brittleness in convergence

compared to other approaches.

Regarding other components in the DRL network structure,

the input is the state of transport properties and current

QoS/QoE, and with two fully connected layers, we also utilize

long short-term memory (LSTM) [24] before feed parameters

to pre-training actor and critic networks. This allows our intent-

aware transport-layer services to make time-series predictions

in the environment of a large input space [9]. In actor-critic

based approach, the actor-network controls how the end host

behaves by learning the optimal policy from a given state as

input and aims to make the best transport-layer configuration

decisions.

 The critic network evaluates the action by computing the

value function. We utilize soft actor-critic which makes use of

three functions: a state value function V, a soft Q-function Q,

and a policy function 𝜋 . We train the three function

approximators in line with [22, 25] for discrete transport-layer

protocol and CC selections. For continuous transport-layer

adaptive configuration, the three function approximators are

trained as in [22, 25].

 We provide the pseudo-code for our intent-aware transport-

layer policy manager in Table 1. First, it updates all the network

functions during each epoch in an experience-replay manner.

After the actor-critic based training, the actor network can be

used to make transport-layer configuration decisions. More

specifically, the process consists of two phases: 1) Offline

training: the actor and critic networks are built and pre-trained

with a number of historic transition samples in order to achieve

relatively good initial parameters for phase 2. 2) Online control:

start with a set of parameters initialized in phase 1, in each epoch

t, the agent observes the state 𝑠௧ and obtains the Q-value from

the actor-critic networks. Then, a list of action 𝑎௧ are selected

based on 𝜋 -policy, whether to choose a specific transport

protocol, congestion control or to increase and decrease

congestion control window to a certain amount. The transport-

layer policy manager is encouraged to explore different possible

actions that assign equal probabilities to actions that have

relatively similar Q-values. After the action 𝑎௧ is executed, the

agent observes the reward 𝑟௧ and next state 𝑠௧ାଵ on which the

action policy keeps updating for the next epoch time t+1. The

transition (𝑠௧ , 𝑎௧ , 𝑟௧ , 𝑠௧ାଵ) is stored in the memory at the end

of each time period. Note that even though the future transport-

layer services should be able to holistically adapt against both

user-intended requirements and dynamic network conditions

which will result in rapid exploration of huge action space and

complexities, in this paper, we focus on the flexible intent of

application where there can be multiple users, especially they

require for performance Synchronisation, even for the same

application type. The intelligent transport layer should be able to

understand the actual requirements of the application and adapt

its configuration to satisfy them.

IV. REAL-LIFE PERFORMANCE EVALUATIONS

This section presents a multi-criteria evaluation of our intent-

aware transport-layer intelligence, focusing on the live

volumetric streaming application and its performance with

different sets of application requirements and intents.

A. Volumetric streaming application overview

 The live volumetric system captures 3D objects from various

locations using multiple sensor cameras like Azure Kinect.

Each camera sends colour-depth images converted to 3D point

clouds to a server. The server receives frames from different

clients, processes them, and creates a rendered hologram. This

technology enables viewing 3D objects from different angles,

making it applicable in various areas such as teleconference,

telecommunication, tele-training, entertainment, and

healthcare. The paper evaluates the performance of the intent-

aware transport-layer services in a predefined scenario:

Immersive bidirectional interactions and live teleporting of

multiple objects from different network locations prioritize

minimizing the time gap between frames arriving at the server

from different sources to ensure Synchronisation. The paper

mainly focuses on the flexible intent of the application with

static but different access delays. It briefly mentions evaluating

the transport-layer services in the presence of more complex

and dynamic network conditions, leaving the adaptability to

future work. Throughout the evaluation, the minimum Round-

Trip Time (RTT) of the network is set to 25 ms, and the buffer

size is 128 KB.

We design the learning model of the transport-layer policy

manager using Python and Tensorflow [26], running on a

machine with an Intel i7 3.2 GHz CPU card, GTX 1060 GPU

card, and 32GB memory. For parameters of the proposed DRL

network. we set the discount factor as 0.99 and the learning rate

for both the actor-critic networks is 1e-4. The hidden layers’

size is 128. The number of iterations is 10000. We use 70% data

for training and 30% of the data for evaluation.

B. Intent-aware congestion window configurations

Then we evaluate the performance impacts of our intent-

aware transport-layer services on congestion control

configurations (i.e. cwnd) tailoring for the predefined scenario.

We evaluate and compare our intent-aware transport-layer

services’ decision-making against the most popular TCP

scheme: TCP Cubic [6], with no intent awareness in its

algorithm. In this scenario of live volumetric streaming (see

Fig.3), the server receives frames from two different sources:

source 1 with 25ms RTT and source 2 with 50ms RTT. Due to

the frame Synchronisation requirements, the target is to

minimize the time gap between frames coming from different

sources with the upper threshold for the time gap being 50ms.

As shown in Fig. 3d-f, our intent-aware transport-layer services

could handle not only one-to-one sender-receiver

communication but also many-to-one communication for future

application usage. In order to reduce the time gap between

(a) (b) (c)

(d) (e) (f)

Figure 3. Live volumetric streaming performance with: TCP without intent awareness (a-c) and intent-aware transport-

layer services (d-f) in bi-directional multisource live streaming use case which prioritise the frame arrival time.

frames sent from different sources where source 1 has a shorter

path compared to source 2, the proposed transport-layer

services are able to adaptively and strictly minimize the queuing

delay in the longer path while being more relaxed in the shorter

path. At some certain events in source 1, the predicted cwnd is

adaptively configured higher than the calculated Cubic cwnd

(Fig. 3f) which results in relatively higher playback latency in

the shorter path. As a result, this allows the frame time gap

between the two sources to keep under 40 ms (Fig. 3e) while

both maintain above 20 average FPS performance (Fig. 3d).

This comes with the cost of playback latency has been

compromised in source 1 (Fig. 3e) in order to achieve the fully

synchronized frames from multiple sources [10, 11]. On the

other hand, when both sources are running traditional TCP with

no intent awareness, the frame arrival time gap varies from 20

ms to 120 ms. The average time gap is 72 ms which exceeds

significantly the 50 ms target resulting in severe frame

misalignment [11]. In the worst-case scenario, the frame arrival

time gap between two clients running traditional TCP Cubic

with no intent awareness can go up to 100 ms which is two to

three times higher compared to the time gap between the clients

running our intent-aware transport services.

V. CONCLUSION

In this paper, we introduce a transport-layer intelligence with

application intent awareness, enabling complex applications to

express their intent to the transport layer. This innovation

supports immersive mixed-reality applications with transparent

deployment and configuration of transport-layer protocols. We

evaluate our intent-aware services, emphasising frame

synchronisation in a multi-party scenario, and demonstrate that

our system can autonomously predict the most suitable

protocols and configurations to balance complex requirements

and achieve application performance targets.

VI. CONTRIBUTION AND ACKNOWLEDGEMENT

Vu San Ha Huynh†, Peng Qian† are co-first authors of this

work. This work is funded by SPIRIT project, Grant Agreement

101070672, and the link is https://www.spirit-project.eu/.

REFERENCES

[1] Qian, P., Huynh, V.S.H., Wang, N., Anmulwar, S., Mi, D. and
Tafazolli, R.R., 2022. “Remote Production for Live Holographic
Teleportation Applications in 5G Networks”. IEEE Transactions on
Broadcasting. 2022.

[2] I. Selinis, N. Wang, B. Da, D. Yu and R. Tafazolli. “On the Internet-
scale streaming of holographic-type content with assured user quality
of experiences”. IFIP networking conference (networking), pp. 136-
144. IEEE. 2020.

[3] S. Anmulwar, N. Wang, A. Pack, V. S. H. Huynh, J. Yangy, R.
Tafazolli. “Frame Synchronisation for Multi-Source Holograhphic
Teleportation Applications - An Edge Computing Based Approach”.
IEEE International Symposium on Personal, Indoor and Mobile
Radio Communications. 2021.

[4] R. Stewart and C. Metz, “SCTP: New Transport Protocol for TCP/IP,”
IEEE Internet Comp., v. 5, n. 6, pp. 64–69. 2001.

[5] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic, D. Zhang, F.
Yang, F. Kouranov, I. Swett, J. Iyengar, et al. “The QUIC Transport
Protocol: Design and Internet-Scale Deployment”. Proceedings of the
Conference of the ACM Special Interest Group on Data
Communication. ACM, pp.183–196. 2017.

[6] I. R. Sangtae Ha and L. Xu. “Cubic: A new TCP-friendly high-speed
TCP variant”. SIGOPS-OSR, 2008.

[7] N. Cardwell, Y. Cheng, C. S. Gunn, V. Jacobson, and S. Yeganeh.
“BBR: Congestion-Based Congestion Control”. In ACM Queue.
2016.

[8] Qian, Peng, Ning Wang, and Rahim Tafazolli. "User Intent Driven
Path Switching in Video Delivery-An Edge Computing Based
Approach." IEEE INFOCOM 2022-IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS). IEEE, 2022

[9] Volodymyr et al. "Human-level control through deep reinforcement
learning. " Nature (2015).

[10] L. Pang, C. Yang, D. Chen, Y. Song, and M. Guizani. “A survey on
intent-driven networks”. IEEE Access, pp 1–1, 2020.

[11] T. Pauly, B. Trammell, A. Brunstrom, G. Fairhurst, C. Perkins, P. S.
Tiesel, and C. A. Wood. An Architecture for Transport Services.
Internet-Draft draft-pauly-taps-arch-12. Internet Engineering Task
Force https://datatracker.ietf.org/doc/html/draft-ietf-taps-arch-12
Work in Progress. 2022.

[12] N. Khademi et al., “NEAT: A platform- and protocol-independent
Internet transport API,” IEEE Commun. Mag., v. 55, n. 6, pp. 46–54.
2017.

[13] P. S. Tiesel, T. Enghardt, M. Palmer, and A. Feldmann.“Socket
intents: Os support for using multiple access networks and its benefits
for web browsing”. arXiv preprint arXiv:1804.08484. 2018.

[14] Akshay Narayan et al. “Restructuring endpoint congestion control”.
Proceedings of the SIGCOMM 2018, pp 30–43. ACM, 2018.

[15] M. Sardara, L. Muscariello, and A. Compagno, ‘‘A transport layer
and socket API for (h)ICN: Design, implementation and performance
analysis,’’ Proc. 5th ACM Conf. Inf.-Centric Netw. (ACM ICN), pp.
137–147. 2018.

[16] S. Abbasloo, C. Y. Yen, and H. Jonathan Chao. “Wanna Make Your
TCP Scheme Great for Cellular Networks? Let Machines Do It for
You!”. IEEE J. Sel. Areas Commun. 39, 1, pp. 265–279.
https://doi.org/10.1109/JSAC.2020.3036958. 2021

[17] A. Bahnasse, F. E. Louhab, H. A. Oulahyane, M. Talea, and A. Bakali,
‘‘Novel SDN architecture for smart MPLS traffic engineering-
diffserv aware management,’’ Future Gener. Comput. Syst., v. 87, pp.
115–126. 2018.

[18] TM Forum. Tm forum - how to manage digital transformation, agile
business operations & connected digital ecosystems.

[19] Network Functions Virtualisation ETSI. Management and
orchestration network service templates specification. Technical
report, DGS/NFV-IFA014.

[20] ETSI. Multi-access edge computing (mec); framework and reference
architecture, 2019. P.

[21] M. A. M. Vieira, M. S. Castanho, R. D. G. Pacífico, E. R. S. Santos,
E. P. M. C. Júnior, and L. F. M. Vieira, ‘‘Fast packet processing with
eBPF and XDP: Concepts, code, challenges, and applications,’’ ACM
Comput. Surv., v. 53, n. 1, pp. 1–36, 2020.

[22] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, ‘‘Soft actor-critic:
Off-policy maximum entropy deep reinforcement learning with a
stochastic actor,’’ 2018, arXiv:1801.01290. [Online]. Available:
http://arxiv.org/abs/1801.01290.

[23] Reichl, S. Egger, R. Schatz, and A. D’Alconzo, “The logarithmic
nature of QoE and the role of the Weber–Fechner law in QoE
assessment” . Proc. IEEE ICC, pp. 1–5. 2010.

[24] S. Hochreiter and J. Schmidhuber, ‘‘Long short-term memory,’’
Neural Comput., vol. 9, no. 8, pp. 1735–1780, 1997

[25] P. Christodoulou, ‘‘Soft actor-critic for discrete action settings,’’
2019, Online].Available: http://arxiv.org/abs/1910.07207.

[26] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, and M. Kudlur, ‘‘Tensorflow: A
system for large-scale machine learning,’’ in Proc. OSDI, 2016, pp.
265–283.

[27] Peng Qian, NingWang, and Rahim Tafazolli. Achieving robust
mobile web content delivery performance based on multiple
coordinated quic connections. IEEE Access, 6:11313–11328, 2018.

