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Abstract— Emerging immersive media applications demand 

tailored performance to accommodate diverse user intents, 

particularly in scenarios with multiple users with different intents 

and requiring frame synchronisation. This paper introduces a 

novel transport-layer intelligence scheme that leverages a user 

intent-aware API. This API enables the application layer to 

communicate specific user intents and requirements to the 

transport layer, optimizing immersive application performance. 

Using deep reinforcement learning, our solution automatically 

selects the optimal transport protocol and configuration for each 

user intent across various immersive scenarios. Our evaluation 

focuses on a live immersive video streaming application, with 

different users transmitting volumetric content under different 

network conditions. Results demonstrate that our scheme 

accurately identifies suitable transport protocols and tailored 

configurations for a wide range of user intents, ensuring multi-

user frame Synchronisation. 
Index Terms— volumetric streaming, Transport-layer 

intelligence, Intent-based networking  

I. INTRODUCTION 

In recent years, with the rise of interactive virtual reality 

devices and the emergence of various multi-party applications, 

how to effectively transmit live volumetric content over 

networks has become a hot topic in both the industry and 

academia [1-3]. However, only minor attention has been paid 

to transport layer protocols, which are responsible for probing 

network conditions and directly determining the transmission 

rate of the volumetric frame. The legacy transport layer 

protocols (e.g., SCTP, TCP, and QUIC [4-5]) and their 

congestion control algorithms (BBR, CUBIC [6-7]) lack the 

flexibility and programmability to meet the diverse needs of 

modern media applications, particularly those with varying user 

intents in live volumetric streaming scenarios. For instance, 

considering an Internet-scale live virtual performance, the 

members of a band can be located in different countries or 

cities, and perform corresponding musical instruments by 

receiving the volumetric images of other members. At the same 

time, after the volumetric content of all band members is 

transmitted to the audience in different regions, the audience 

can also transmit their interactive behaviours to the band in the 

form of volumetric content for real-time interaction. However, 

due to variations in personnel numbers, behavioural patterns, 

and the current stage's focus, the volume of transmitted content 

may significantly differ [1, 8]. In addition, the transmission of 

such multi-party content in different regions needs to undergo 

various network conditions. Therefore, the transport layer 

protocol is required to dynamically perceive the unpredictable 

user intent changes in the application layer and make real-time 

rate adjustments based on the changes in both the application 

layer and the network conditions. In other words, flexibility and 

extensibility are crucial, especially for multi-user 

Synchronisation, precluding a one-size-fits-all approach.  

In this paper, we propose a transport-layer architecture that 

incorporates user intent awareness for immersive volumetric 

environments. This architecture exposes an intent interface at 

the application layer to communicate and indicate the user’s 

specific requirements to the transport layer. User intent input 

can be translated into instant application performance 

requirements, and then the transport layer protocol will 

automatically conduct self-adaptive configuration to guarantee 

such requirements (e.g., multi-party frame Synchronisation).    

By doing so, we aim to enhance the flexibility and 

programmability of the transport layer, with minimal 

modifications to legacy applications while ensuring zero risk to 

the kernel. This architecture also eliminates the need for manual 

tuning of transport-layer parameters or expert knowledge of 

different transport stacks, enabling scalable and adaptive 

Synchronisation tailored to user intents. We employ deep 

neural networks enhanced by reinforcement learning for robust 

function approximation, capturing intricate representations of 

application use case intents and requirements. By leveraging 

and extending the actor-critic reinforcement learning 

framework [9], our approach enables the actor network to 

govern transport-layer configuration decisions, while the critic 

network assesses and provides feedback on the chosen 

configurations, tailored to specific user intents within 

immersive applications.  

The main contribution of our work is listed as follows: 

 We propose a holistic solution for user intent awareness at 

the transport layer in live volumetric immersive 

applications. Our approach includes an application-intent 

expression Application Programming Interface (API) and 

an intent policy manager to translate such user intent into 

detailed performance metrics. This allows the transport 

layer to adaptively support tailored application 

requirements across diverse use cases. 

 We implement a Deep Reinforcement Learning (DRL)--

based transport-layer scheme that identifies the most 

suitable protocols and configurations to meet user intent-

specific performance requirements in live volumetric 

applications. This ensures the transport layer's extensibility 

and flexibility, enabling transparent utilization of existing 

protocols with intent-optimized configurations. 

 In our evaluation, we compare our intent-aware transport-

layer services against traditional approaches in a live 

volumetric streaming application, emphasizing multi-user 
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Synchronisation. Our system significantly improves 

performance in key metrics, predicting appropriate 

protocols and configurations to achieve desired application 

performance while balancing trade-offs. 

The remainder of the paper is organized as follows: Section II 

reviews related literature, Section III details the framework 

architecture and DRL algorithm, Section IV analyses performance, 

and Section V concludes the paper. 

II. LITERATURE REVIEW 

Intent-driven networks (IDN) [10] is a recent approach that 

allows expressing service needs ("intents") through declarative 

or imperative mechanisms, abstracting away the complexity of 

their implementation. These intents, with the right level of 

abstraction, can comprehensively describe services or 

applications and their requirements, which are then 

communicated to lower network layers. IDN starts with a 

semantic language to represent intents, converting them to 

primitives and mapping them to executable policies. These 

policies are verified and deployed to the network to fulfil the 

original service intents. However, a unified and clear definition 

of IDN is still lacking, and its enabling techniques are under 

further exploration. 

In recent years, various intent-aware and protocol-

independent transport layers have been introduced, including 

IETF TAPS [11], NEAT [12], Socket Intents [13], and 

Congestion Control Plane (CCP) [14], aiming to enhance the 

flexibility and extensibility of the transport layer. IETF TAPS 

[11], a recent standard body effort, strives to replace the 

conventional system-level socket API with a new transport-

layer socket API, enabling applications to articulate their needs 

and preferences for optimal transport-layer service selection. 

CCP [14], another recent advancement, modifies parameters 

like congestion window and sending rate in user space to 

customize the congestion control of underlying TCP 

implementations. Hybrid Information-Centric Network (ICN) 

Transport [15] leverages the ICN architecture, using prefixes in 

content naming to communicate application intents, such as 

real-time audio or video streams, and tags like "wireless," 

"cellular," "interactive," or "reliable" to indicate preferences. 

These tags are not static but can be dynamically updated. 

Researchers in [16] explored deep reinforcement learning to 

adjust TCP's congestion window, ensuring applications achieve 

their desired delays in dynamically changing networks. 

Leveraging advancements in network programmability and 

virtualization, numerous other cross-layer application intent 

awareness efforts have been proposed, including DiffServ [17], 

TMForum APIs [18], ETSI NFV Network Service Descriptor 

[19], and ETSI Mobile Edge Application Descriptor [20]. These 

efforts span data paths, user and kernel spaces, stream-byte and 

message-based approaches, demonstrating the ongoing 

innovation in intent-driven networking. 

Although significant progress has been made in the next-

generation intent-aware transport layer, available requests or 

API calls are still constrained by static APIs. CCP [14], AI-

based congestion control [16], and transport layer adaptation 

[27] often rely on a specific transport protocol (e.g., TCP or 

QUIC) or predefined application requirements (e.g., 

throughput, delay), limiting their generality and adaptability. 

Research on IDN [10], emphasizing intent taxonomy and 

lifecycle functions, and Hybrid-ICN Transport [15] are ongoing 

but lack unified standards, implementations, verifications, and 

transport orchestration support. This underscores the need for 

further advancements in transport layer architecture to fulfil the 

demands of future user intent-aware networks.  

 

III. INTENT-AWARE TRANSPORT-LAYER SERVICES 

In this section, we describe the design of our intent-aware 

transport-layer architecture tailored for volumetric applications in 

which end users may express different intents on the applications 

in specific use case scenarios.  

A. System Overview 

We propose intent-aware transport-layer services that allow 

the extensible and flexible use of any transport-layer protocols 

with minimal modification at the application’s source code (see 

Fig. 1). The connection handler is the key component to receive 

the configuration policy translated from user intent.  By 

capturing the packets at the socket layer and redirecting them 

from the traditional data path, this connection handler allows to 

autonomously configure different connection properties (e.g. 

congestion control algorithm, congestion window (cwnd), 

initial window (IW), etc.) in response to different or changing 

of user intents in human-oriented immersive applications. 

Meanwhile, useful information from captured packets will be 

stored as input statistical data for a DRL module to train and 

generate an optimal configuration policy. These real-time 

configuration policies tailored for different user intents will be 

loaded by the transport layer policy manager and then instructed 

to the underlying protocol stack accordingly through the 

connection handler. Since the connection handler manages pre-

activated sockets of different transport layer protocols (e.g.,  

TCP, QUIC, SCTP), it will first select one of the protocols, and 

then configure its parameters. Moreover, the selected transport-

layer configuration towards which the data path redirection is 

executed may either already exist in the Operating System (OS) 

or not, therefore in order to maintain reliability, our intent-

aware transport-layer architecture integrates a systematic 

fallback to the application’s original transport-layer protocol in 

any failure situation (middleboxes interferences, etc.). 

Consequently, this architecture is not limited to any particular  

Figure 1. Intent-aware transport-layer services architecture for volumetric 

streaming environments 



 

 

 
Figure 2. Simplified Workflow of the intent framework 

 

implementation of the main execution loop which could be 

using eBPF [21] (for Linux kernel) or a customized datapath 

library (e.g. libccp [14]).  

Fig. 2 shows an overview of intent-aware transport-layer 

services at the sender and receiver sides. Application 

performance targets or requirements in a specific intent are 

receiver-driven and can be flexibly expressed via our designed 

transport-layer API both at the beginning or in the middle of the 

data transmission session. The sender acquires frame request 

packets from the receiver and updates its intent map to keep 

track of applications with its corresponding user intent.   Also, 

it performs a transport-layer protocol selection, and 

configuration optimization process with an aim to satisfy the 

requests of receivers. Application at the receiver side is allowed 

to express its requirement through our transport-layer API 

which updates the intent map at run time. The intent map allows 

us to map applications with their intent-dependent requirements 

as well as with its most suitable transport-layer protocols to 

satisfy these targets at a low computational cost. Packets 

received from the network card will be redirected to eXpress 

Data Path (XDP) [21] to perform high-speed packet processing 

before mapping back to the corresponding application. These 

packets received are also used for network profiling for future 

analysis. 

In terms of detailed function implementation, at both the 

sender and receiver sides, the system interrupts the data path of 

the application’s original transport-layer protocol (e.g. TCP) 

and takes control of the packets for our intelligent processing 

before the network stacks. The intent-aware transport-layer 

services capture system calls and network events (e.g. 

sendmsg(), recvmsg()) and then run our own safety-verified 

data-path programs at both user and kernel space. Assuming a 

host running the Linux operating system, the implementation 

using eBPF [21] hookers attached to root cgroupv2 [21] will 

enable every incoming and outcoming packet of all processes 

on the host to be captured and processed. With the assistance of 

a locally maintained intent/socket map, the socket and message 

controller are able to identify the specific socket and process to 

which the data packets should be forwarded. This map is 

updated in the socket and message controller every time a 

connection is established or closed. 

 

B. Deep Reinforcement Learning-Based Intent-Aware 

Transport-Layer Protocol Selection & Configuration 

Based on the filtered packet information, we utilize a deep 

reinforcement learning approach [9, 22, 25] in our integrated 

transport policy manager to automatically identify the most 

suitable set of transport-layer protocols and configurations to 

satisfy the user intent. We manage to investigate whether 

reinforcement learning “trial-and-error” approaches could be 

used to enable transport-layer intelligence where our 

considered scenarios have non-guaranteed global knowledge 

and a certain degree of dynamics in application intent-

dependent requirements. 

Input sample: The inputs into the transport policy manager 

comprise network characteristics profiling from the receiving 

packets (e.g., normalized round trip delay, packet loss). Based 

on that, the transport policy manager builds a table of network 

state and state transitions. The observed Quality-of-Service 

(QoS) metrics are utilized to infer the objective application-

specific performance to which we compare the expected 

performance in the reward function. As the intent-aware 

transport policy manager maintains a historical record of state-

action-reward tuples ൏ 𝑠 ,𝑎 , 𝑟  , we describe our novel 

design of state and action spaces, and the reward function of the 

agent as follows: 

State space: state 𝑠௧ of endpoint 𝑛 at time t is 𝑠௧ ൌ ሼ𝑢௧ሽ where 𝑢௧ ൌ ሼ𝑢,௧ ,  𝑢,ଶ௧ ,  … ,  𝑢,௧ ሽ  as the QoS and application-specific 

performance utility values observed. These QoS and 

application-specific performance utility values are bounded 

histories of statistics from received packet acknowledgement, 

and also the application layer feedback if it can be retrieved 

from the user intent interface. We propose to avoid metrics that 

are expected to be highly variable across connections just 

because of variations in link properties (e.g. deteriorated 

wireless signals). 

Action space: action 𝑎௧ of endpoint 𝑛 at time t is defined as: 𝑎௧ ൌ ሼ𝑝௧ ,  ∀𝑝 ∈ 𝑃ሽ,  𝑝௧ ൌ ሾ0,1ሿ indicating a list of transport-

layer candidates associated with different configurations (e.g. 

Congestion Control (CC), cwnd, etc.). Our system model 

encourages exploration and avoids repeatedly selecting a 

particular set of transport parameters by assigning equal 

probabilities to actions having relatively the same Q-values. We 

manage to explore the action space where the transport policy 

manager selects the most suitable transport-layer protocols (e.g. 

TCP, UDP, QUIC, SCTP, etc.) and its transport-layer features 

(e.g. congestion control algorithms, cwnd, IW) based on the 

observed states to maximize the reward function. Our intent-

aware transport-layer policy manager treats continuous cwnd 

configuration and discrete CC configuration separately. It is due 

to the huge space of the continuous action (i.e., the value of 

cwnd) that the DRL-agent can do at different times. Thus, in 

order to improve the feasibility and efficiency, we let the DRL 

agent find the best values of the action based on the parameters 

calculated by the underlying transport protocol (e.g. TCP). 

Thus, we propose a function that relates cwndୢ୰୪ value to the 

value of cwnd that the DRL-agent receives periodically from 

the state block: 

 



 

cwndୢ୰୪ ൌ  cఈ ൈ cwnd                                      ሺ1)  

 

where c is a constant factor and −1 ≤ α ≤ 1. Instead of searching 

the entire space, this simplifies the exploration phase and 

improves the learning convergence. 

 

Reward space: 

 𝑟௧ ൌ െሺ𝑟𝑒𝑞_𝑢𝑡𝑖𝑙𝑖𝑡𝑦௧ െ 𝑐𝑢𝑟𝑟_𝑢𝑡𝑖𝑙𝑖𝑡𝑦௧ሻ reflecting the gap 

between the intent-dependent request and the current 

experience. The reward model aims to reflect application-

specific performance, possibly under QoS and other constraints, 

and the policy design that maximizes long-term rewards. As the 

reward may depend on the requirements of different 

applications, we aim to generalize the reward function. We 

prefer objective application-specific performance evaluation 

over subjective application-specific performance evaluation to 

increase the level of automation without manual expression from 

the application layer (e.g. Mean Opinion Score). QoS metrics 

are prominently used in the automated application-specific 

performance evaluation, thus we utilize WFL (Weber-Fechner 

Law) [23] and IQX (Exponential Interdependency of QoE/QoS) 

[23] to calculate reward utility function:  

 

 qoe୧,୮୲  = γ
p
 × log(αp × qos୧୲ + β

p
 ) + θp                    (2)  

 

for positive QoS metrics and  

 

qoe୧,୬୲  = γ
n
 × eαn × ୯୭ୱ౪ + βn  + θn                               (3) 

  

for negative QoS metrics in which 𝛼, 𝛽, 𝛾 and 𝜃 are constant 

parameters to fine-tune QoS/ application-specific  performance  

relationships. The reward utility function is: 

 

                   𝑟𝑒𝑞_𝑢𝑡𝑖𝑙𝑖𝑡𝑦௧ ൌ 𝛼𝑞𝑜𝑒,௧ െ 𝛽𝑞𝑜𝑒,௧                        (4)  

 

Note that some application-specific performance 

requirements may conflict with each other (e.g. high Frame-Per-

Second (FPS), low playback latency), thus we utilize 𝛼, 𝛽 as the 

weighting factor controlled by the specified requirement priority 

from the application.  

Moreover, we propose to utilize the soft actor-critic based RL 

[22] approach which optimizes a stochastic policy in an off-

policy manner. The actor-network controls the transport-layer 

configuration decisions/actions, and the critic network 

evaluates and provides feedback on the chosen decisions to 

update the transport-layer policy. Soft actor-critic [22,25] 

allows our intent-aware transport-layer services to explore the 

continuous action space of cwnd while being more sample 

efficient and more robust to brittleness in convergence 

compared to other approaches.  

Regarding other components in the DRL network structure, 

the input is the state of transport properties and current 

QoS/QoE, and with two fully connected layers, we also utilize 

long short-term memory (LSTM) [24] before feed parameters 

to pre-training actor and critic networks. This allows our intent-

aware transport-layer services to make time-series predictions 

in the environment of a large input space [9].  In actor-critic 

based approach, the actor-network controls how the end host 

behaves by learning the optimal policy from a given state as 

input and aims to make the best transport-layer configuration 

decisions.  

   The critic network evaluates the action by computing the 

value function. We utilize soft actor-critic which makes use of 

three functions: a state value function V, a soft Q-function Q, 

and a policy function 𝜋 . We train the three function 

approximators in line with [22, 25] for discrete transport-layer 

protocol and CC selections. For continuous transport-layer 

adaptive configuration, the three function approximators are 

trained as in [22, 25].  

 We provide the pseudo-code for our intent-aware transport-

layer policy manager in Table 1. First, it updates all the network 

functions during each epoch in an experience-replay manner. 

After the actor-critic based training, the actor network can be 

used to make transport-layer configuration decisions. More 

specifically, the process consists of two phases: 1) Offline 

training: the actor and critic networks are built and pre-trained 

with a number of historic transition samples in order to achieve  

relatively good initial parameters for phase 2.  2) Online control: 

start with a set of parameters initialized in phase 1, in each epoch 

t, the agent observes the state 𝑠௧ and obtains the Q-value from 

the actor-critic networks. Then, a list of action 𝑎௧ are selected 

based on 𝜋 -policy, whether to choose a specific transport 

protocol, congestion control or to increase and decrease 

congestion control window to a certain amount. The transport-

layer policy manager is encouraged to explore different possible 

actions that assign equal probabilities to actions that have 

relatively similar Q-values. After the action 𝑎௧ is executed, the 

agent observes the reward 𝑟௧ and next state 𝑠௧ାଵ on which the 

action policy keeps updating for the next epoch time t+1. The 

transition (𝑠௧ , 𝑎௧ , 𝑟௧ , 𝑠௧ାଵ) is stored in the memory at the end 

of each time period. Note that even though the future transport-

layer services should be able to holistically adapt against both 

user-intended requirements and dynamic network conditions 

which will result in rapid exploration of huge action space and 



 

complexities, in this paper, we focus on the flexible intent of 

application where there can be multiple users, especially they 

require for performance Synchronisation, even for the same 

application type. The intelligent transport layer should be able to 

understand the actual requirements of the application and adapt 

its configuration to satisfy them. 

IV. REAL-LIFE PERFORMANCE EVALUATIONS 

This section presents a multi-criteria evaluation of our intent-

aware transport-layer intelligence, focusing on the live 

volumetric streaming application and its performance with 

different sets of application requirements and intents.  

 

A. Volumetric streaming application overview 

   The live volumetric system captures 3D objects from various 

locations using multiple sensor cameras like Azure Kinect. 

Each camera sends colour-depth images converted to 3D point 

clouds to a server. The server receives frames from different 

clients, processes them, and creates a rendered hologram. This 

technology enables viewing 3D objects from different angles, 

making it applicable in various areas such as teleconference, 

telecommunication, tele-training, entertainment, and 

healthcare. The paper evaluates the performance of the intent-

aware transport-layer services in a predefined scenario: 

Immersive bidirectional interactions and live teleporting of 

multiple objects from different network locations prioritize 

minimizing the time gap between frames arriving at the server 

from different sources to ensure Synchronisation. The paper 

mainly focuses on the flexible intent of the application with 

static but different access delays. It briefly mentions evaluating 

the transport-layer services in the presence of more complex 

and dynamic network conditions, leaving the adaptability to 

future work. Throughout the evaluation, the minimum Round-

Trip Time (RTT) of the network is set to 25 ms, and the buffer 

size is 128 KB. 

We design the learning model of the transport-layer policy 

manager using Python and Tensorflow [26], running on a 

machine with an Intel i7 3.2 GHz CPU card, GTX 1060 GPU 

card, and 32GB memory. For parameters of the proposed DRL 

network. we set the discount factor as 0.99 and the learning rate 

for both the actor-critic networks is 1e-4. The hidden layers’ 

size is 128. The number of iterations is 10000. We use 70% data 

for training and 30% of the data for evaluation. 

 

B. Intent-aware congestion window configurations 

Then we evaluate the performance impacts of our intent-

aware transport-layer services on congestion control 

configurations (i.e. cwnd) tailoring for the predefined scenario. 

We evaluate and compare our intent-aware transport-layer 

services’ decision-making against the most popular TCP 

scheme: TCP Cubic [6], with no intent awareness in its 

algorithm. In this scenario of live volumetric streaming (see 

Fig.3), the server receives frames from two different sources: 

source 1 with 25ms RTT and source 2 with 50ms RTT. Due to 

the frame Synchronisation requirements, the target is to 

minimize the time gap between frames coming from different 

sources with the upper threshold for the time gap being 50ms.  

As shown in Fig. 3d-f, our intent-aware transport-layer services 

could handle not only one-to-one sender-receiver 

communication but also many-to-one communication for future 

application usage. In order to reduce the time gap between 

(a)                                                                 (b)                                                            (c) 

(d)                                                                 (e)                                                         (f) 

Figure 3. Live volumetric streaming performance with: TCP without intent awareness (a-c) and intent-aware transport-

layer services (d-f) in bi-directional multisource live streaming use case which prioritise the frame arrival time.  



 

frames sent from different sources where source 1 has a shorter 

path compared to source 2, the proposed transport-layer 

services are able to adaptively and strictly minimize the queuing 

delay in the longer path while being more relaxed in the shorter 

path. At some certain events in source 1, the predicted cwnd is 

adaptively configured higher than the calculated Cubic cwnd 

(Fig. 3f) which results in relatively higher playback latency in 

the shorter path. As a result, this allows the frame time gap 

between the two sources to keep under 40 ms (Fig. 3e) while 

both maintain above 20 average FPS performance (Fig. 3d). 

This comes with the cost of playback latency has been 

compromised in source 1 (Fig. 3e) in order to achieve the fully 

synchronized frames from multiple sources [10, 11]. On the 

other hand, when both sources are running traditional TCP with 

no intent awareness, the frame arrival time gap varies from 20 

ms to 120 ms. The average time gap is 72 ms which exceeds 

significantly the 50 ms target resulting in severe frame 

misalignment [11]. In the worst-case scenario, the frame arrival 

time gap between two clients running traditional TCP Cubic 

with no intent awareness can go up to 100  ms which is two to 

three times higher compared to the time gap between the clients 

running our intent-aware transport services. 

V. CONCLUSION 

In this paper, we introduce a transport-layer intelligence with 

application intent awareness, enabling complex applications to 

express their intent to the transport layer. This innovation 

supports immersive mixed-reality applications with transparent 

deployment and configuration of transport-layer protocols. We 

evaluate our intent-aware services, emphasising frame 

synchronisation in a multi-party scenario, and demonstrate that 

our system can autonomously predict the most suitable 

protocols and configurations to balance complex requirements 

and achieve application performance targets.  
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