

Open-source ULL-DASH-PC for multi-party real-time communication

Jack Jansen¹, Sohaib Larbi², Silvia Rossi¹, Romain Bouqueau², Pablo Cesar^{1,3}, Irene Viola¹

¹ Centrum Wiskunde en Informatica, Amsterdam, The Netherlands ² Motionspell, Paris, France ³ TU Delft, Delft, The Netherlands

Background

future of communication is The immersive: XR (Extended Reality) offers realism, interactivity, and natural remote presence.

- Current systems rely on WebRTC / WebSocket → centralized, limited scalability.
- Lack of Standardized Benchmarking
- Limited data on performance in realworld networks (e.g., 5G).

We propose **ULL-DASH-PC**: an opensource implementation of ultra-lowlatency DASH for point cloud contents, enabling real-time, multi-user, multiquality immersive telecommunication.

We integrate our solution in VR2Gather and cwipc [2] and benchmark it against real-time transport protocols.

Evaluation

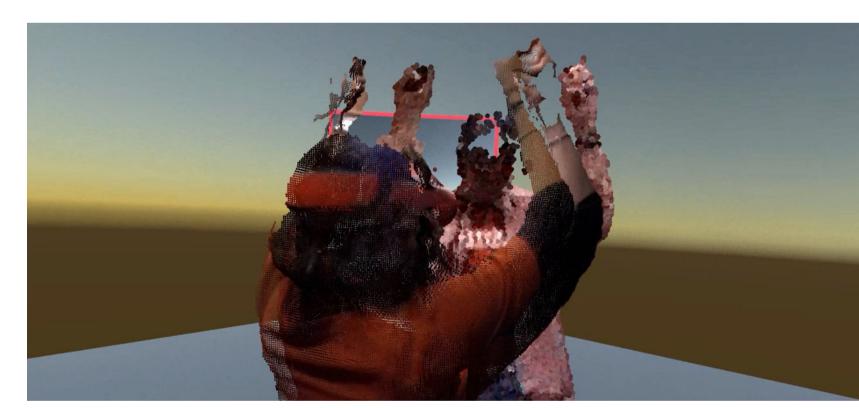


Fig. 1: Example frame from interactive dataset created for the evaluation

Two testbeds: Local (CWI) and 5G (Surrey)

Three scenarios:

- Unidirectional: single sender, single receiver, pre-recorded point cloud.
- Bidirectional: each node acts as sender and receiver, pre-recorded point cloud.
- Interactive: each node ingests RGBD feed from 4 cameras, converts them into point clouds, and plays them back with head traces camera movement. Simulates live capturing (Fig. 1).

Results

Protocol	Octree	Target fps	Latency	Achieved fps
webRTC	7	15	54.70 ± 24.14	13.90 ± 4.26
	7	30	58.92 ± 11.74	27.79 ± 4.58
	9	15	215.99 ± 139.71	8.14 ± 4.82
	9	30	223.10 ± 148.48	8.06 ± 5.04
ULL-DASH-PC	7	15	108.70 ± 15.74	15.30 ± 3.65
	7	30	76.22 ± 14.57	30.91 ± 7.61
	9	15	239.18 ± 49.08	15.34 ± 3.46
	9	30	255.35 ± 31.99	16.00 ± 3.52

Tab. 1: Results for unidirectional @ Surrey testbed (4 tiles of 150K points)

Protocol	Octree	Target fps	Latency	Achieved fps
webRTC	7	15	76.12 ± 25.43	13.98 ± 4.62
	7	30	117.12 ± 17.79	22.75 ± 6.12
	9	15	363.47 ± 151.43	5.54 ± 3.97
	9	30	328.04 ± 153.65	5.51 ± 3.93
ULL-DASH-PC	7	15	160.26 ± 18.74	15.14 ± 3.10
	7	30	171.10 ± 20.52	24.06 ± 4.52
	9	15	438.74 ± 59.37	9.33 ± 2.49
	9	30	408.13 ± 83.76	8.85 ± 2.23

Tab. 2: Results for bidirectional @ CWI testbed (4 tiles of 150K points)

Protocol	Octree	Target fps	Latency	Achieved fps
webRTC	7	15	176.96 ± 57.31	14.25 ± 3.11
	7	30	123.71 ± 37.03	22.85 ± 4.99
	9	15	514.10 ± 215.07	11.92 ± 5.48
	9	30	488.41 ± 206.92	14.85 ± 8.38
ULL-DASH-PC	7	15	298.27 ± 63.23	15.22 ± 2.11
	7	30	265.33 ± 59.36	24.08 ± 3.56
	9	15	372.63 ± 74.18	15.15 ± 2.13
	9	30	387.08 ± 72.15	19.75 ± 4.78

Tab. 3: Results for interactive @ CWI testbed (15 tiles, various point count)

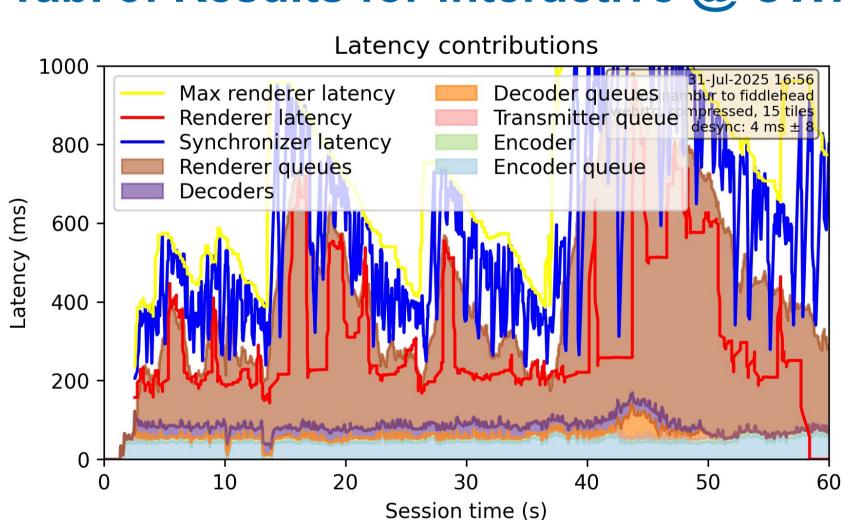


Fig. 2: Example latency for webRTC in interactive session

- Comparable performance in the two testbeds
- Target fps is achieved only for lowest quality in unidirectional setup

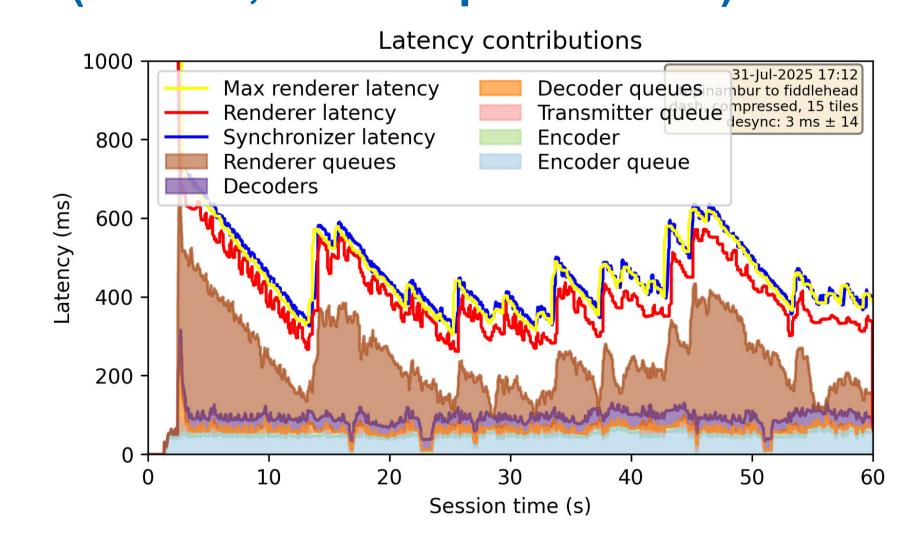


Fig. 2: Example latency for ULL-DASH-PC in interactive session

- WebRTC achieves better latency, with lower frame throughput
- ULL-DASH-PC has higher latency, but better framerate

References

[1] Viola, I., Jansen, J., Subramanyam, S., Reimat, I., & Cesar, P. (2023). VR2Gather: A collaborative social VR system for adaptive multi-party real-time communication. IEEE MultiMedia, 30(2), 48-59.

[2] Reimat, I., Alexiou, E., Jansen, J., Viola, I., Subramanyam, S., & Cesar, P. (2021, June). CWIPC-SXR: Point cloud dynamic human dataset for social XR. In Proceedings of the 12th ACM Multimedia Systems Conference (pp. 300-306).

Contact

Irene Viola irene@cwi.nl

